直線的傾斜角與斜率教學(xué)設(shè)計(jì)
《直線的傾斜角與斜率》教學(xué)設(shè)計(jì)
一、設(shè)計(jì)說明
“直線的傾斜角和斜率”一節(jié)是解析幾何的入門課,學(xué)生對(duì)幾何的認(rèn)識(shí)僅僅停留在初中所學(xué)的直觀圖形的感性階段,因此從學(xué)生最熟悉的直線入手,去研究刻劃直線性質(zhì)的量—傾斜角與斜率,通過對(duì)這一問題的探索去揭示解析幾何的本質(zhì)是:用代數(shù)方法研究圖形的幾何性質(zhì).學(xué)生通過這一節(jié)的學(xué)習(xí),初步感受復(fù)雜問題簡單化、數(shù)形緊密結(jié)合的思想.
二、教學(xué)內(nèi)容分析
直線的傾斜角是這一章所有概念的基礎(chǔ),而這一章的概念核心是斜率,理解二者之間的關(guān)系將是學(xué)此章的關(guān)鍵;過兩點(diǎn)的直線的斜率公式要講透兩點(diǎn),其一是斜率的表象是一種的比值,要讓學(xué)生理解這種表達(dá)式,為兩條直線垂直時(shí)斜率有何關(guān)系、導(dǎo)數(shù)的概念作好鋪墊;其二是斜率的本質(zhì)是與所取的點(diǎn)無關(guān).
三、教學(xué)目標(biāo)
1.知識(shí)與技能:使學(xué)生理解傾斜角與斜率的概念,了解二者之間的關(guān)系,會(huì)求過已知兩點(diǎn)的直線的斜率;
2.過程與方法:通過對(duì)傾斜角與斜率的探討,培養(yǎng)學(xué)生轉(zhuǎn)化的思想,提高解決問題的能力;
3.情感、態(tài)度與價(jià)值觀:在探索傾斜角與斜率的關(guān)系過程中,明確傾斜角的變化對(duì)斜率的影響,并在其中體驗(yàn)嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度.
四、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):傾斜角、斜率、過兩點(diǎn)的直線的斜率公式;
難點(diǎn):斜率;
對(duì)難點(diǎn)的處理:先從簡單的過原點(diǎn)的直線入手,再分傾斜角為銳角、鈍角的情況去分析.
五、教學(xué)策略
對(duì)于“傾斜角與斜率”的教學(xué),教師創(chuàng)設(shè)問題情境,學(xué)生在問題的激勵(lì)下主動(dòng)探究,教學(xué)方法采用師生互動(dòng)式;而“過兩點(diǎn)的直線的斜率公式”的教學(xué)則采用“學(xué)生探索、教師適時(shí)講解”的方法.
六、教學(xué)過程
(一)新知的引入:
在平面直角坐標(biāo)系內(nèi),畫出幾條不同直線,誘導(dǎo)學(xué)生思考,有何不同?
從而進(jìn)一步設(shè)計(jì)決定直線的位置有哪些條件呢?
(設(shè)計(jì)意圖:學(xué)生在教師“問題串”的引導(dǎo)下去思考,得出本章重要知識(shí)點(diǎn))
(二)概念的講解:通過討論我們已經(jīng)知道,決定直線的位置的條件是一個(gè)點(diǎn)與方向.那么如何刻劃直線的方向呢?學(xué)生肯定會(huì)想到角,也會(huì)想到用縱坐標(biāo)的變化量與橫坐標(biāo)的變化量的比值.這時(shí)就需要教師的適時(shí)點(diǎn)播—引出刻劃直線的方向的兩個(gè)量---直線的傾斜角和斜率.
一、直線的傾斜角與斜率
1. 傾斜角(
(1)傾斜角的定義:在平面直角坐標(biāo)系中,直線與軸相交時(shí),軸正向與直線向上方向之間所成的角;注:強(qiáng)調(diào)當(dāng)直線與坐標(biāo)軸軸平行時(shí)的傾斜角。
提問:傾斜角的范圍是什么?(讓學(xué)生自己去解決)
(2)傾斜角的范圍:.
日常生活中,我們用坡度來刻劃道路的“傾斜程度”,坡度即坡面的鉛直高度和水平長度的比;為了用坐標(biāo)的方法刻劃直線的傾斜角,引入直線的斜率概念(也可以從一次函數(shù)的解析式引入,其中的K就是斜率.)
2.斜率讓學(xué)生任畫一條直線,類比坡度的方法,用坐標(biāo)的方法刻劃“直線的坡度”-斜率;
(強(qiáng)調(diào)若直線傾斜角相等,則斜率也相等)
教師定義:當(dāng)橫坐標(biāo)從增加到時(shí),縱坐標(biāo)從增加到稱為直線的斜率;
提問:由此定義,你能發(fā)現(xiàn)斜率的其他形式的定義嗎?
再問:若傾斜角為銳角,求斜率的取值范圍;若傾斜角在銳角內(nèi)變化,斜率如何變化?
(三)例題的講解(7分鐘)
例1:求下列直線的斜率:
(1) y=x (2)y=1 (3)x=0.
(四)課堂練習(xí)
(五)本節(jié)課小結(jié)
八、設(shè)計(jì)反思
在平面解析幾何《直線與方程》的教學(xué)中,教師應(yīng)幫助學(xué)生經(jīng)歷如下的過程:首先將幾何問題代數(shù)化,用代數(shù)的語言描述幾何要素及其關(guān)系,進(jìn)而將幾何問題轉(zhuǎn)化為代數(shù)問題;處理代數(shù)問題;分析代數(shù)結(jié)果的幾何含義,最終解決幾何問題。這種思想應(yīng)貫穿《直線與方程》一章教學(xué)的始終,幫助學(xué)生不斷地體會(huì)“數(shù)形結(jié)合”的思想方法。
《直線的傾斜角與斜率》知識(shí)點(diǎn)總結(jié)
一、傾斜角和斜率
1、直線的傾斜角的概念:當(dāng)直線l與x軸相交時(shí), 取x軸作為基準(zhǔn), x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當(dāng)直線l與x軸平行或重合時(shí), 規(guī)定α= 0°.
2、 傾斜角α的取值范圍: 0°≤α<180°. 當(dāng)直線l與x軸垂直時(shí), α= 90°.
3、直線的斜率:
一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是 k = tanα
?、女?dāng)直線l與x軸平行或重合時(shí), α=0°, k = tan0°=0;
?、飘?dāng)直線l與x軸垂直時(shí), α= 90°, k 不存在.
由此可知, 一條直線l的傾斜角α一定存在,但是斜率k不一定存在.
4、 直線的斜率公式:
給定兩點(diǎn)P1(x1,y1),P2(x2,y2),x1≠x2,用兩點(diǎn)的坐標(biāo)來表示直線P1P2的斜率:
斜率公式: k=y2-y1/x2-x1
二、兩條直線的平行與垂直
1、兩條直線都有斜率而且不重合,如果它們平行,那么它們的斜率相等;反之,如果它們的斜率相等,那么它們平行,即
注意: 上面的等價(jià)是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個(gè)前提,結(jié)論并不成立.即如果k1=k2, 那么一定有L1∥L2
2、兩條直線都有斜率,如果它們互相垂直,那么它們的斜率互為負(fù)倒數(shù);反之,如果它們的斜率互為負(fù)倒數(shù),那么它們互相垂直,
看了“直線的傾斜角與斜率教學(xué)設(shè)計(jì)”
