丰满少妇女人a毛片视频-酒色成人网-日韩欧美一-日韩精品一区二区av在线观看-成人久久免费-欧美精品一二三四区-国产午夜免费-亚洲男人第一天堂-一区二区三区福利视频-午夜激情影院-av中文天堂在线-免费一区二区-欧美日韩xxx-91区视频-亚洲另类激情专区小说图片-黄色的网站在线观看-香蕉精品在线

高分網(wǎng) > 高中學(xué)習(xí)方法 > 高一學(xué)習(xí)方法 > 高一數(shù)學(xué) >

高一上學(xué)期數(shù)學(xué)復(fù)習(xí)題

時(shí)間: 欣欣2 高一數(shù)學(xué)

  以下是小編為大家整理推薦關(guān)于高一數(shù)學(xué)的上學(xué)期期末復(fù)習(xí)試題和答案分析,歡迎大家參閱!

  高一上學(xué)期數(shù)學(xué)復(fù)習(xí)題

  一、選擇題

  1.隨著海拔高度的升高,大氣壓強(qiáng)下降,空氣中的含氧量也隨之下降,且含氧量y(g/m3)與大氣壓強(qiáng)x(kPa)成正比例函數(shù)關(guān)系. 當(dāng)x=36 kPa時(shí),y=108 g/m3,則y與x的函數(shù)解析式為(  )

  A.y=3x(x≥0) B.y=3x

  C.y=13x(x≥0) D.y=13x

  [答案] A

  2.某廠日產(chǎn)手套總成本y(元)與手套日產(chǎn)量x(副)的關(guān)系式為y=5x+4000,而手套出廠價(jià)格為每副10元,則該廠為了不虧本日產(chǎn)手套量至少為(  )

  A.200副 B.400副

  C.600副 D.800副

  [答案] D

  [解析] 由10x-y=10x-(5x+4000)≥0,得x≥800.

  3.甲、乙兩人在一次賽跑中,路程s與時(shí)間t的函數(shù)關(guān)系如圖所示,則下列說法正確的是(  )

  A.甲比乙先出發(fā) B.乙比甲跑的路程多

  C.甲、乙兩人的速度相同 D.甲先到達(dá)終點(diǎn)

  [答案] D

  [解析] 由圖象知甲所用時(shí)間短,所以甲先到達(dá)終點(diǎn).

  4.某個(gè)體企業(yè)的一個(gè)車間有8名工人,以往每人年薪為1萬元,從今年起,計(jì)劃每人的年薪比上一年增加20%;另外,每年新招3名工人,每名新工人的第一年年薪為8千元,第二年起與老工人的年薪相同.若以今年為第一年,那么,將第n年企業(yè)付給工人的工資總額y(萬元)表示成n的函數(shù),其解析式為(  )

  A.y=(3n+5)×1.2n+2.4 B.y=8×1.2n+2.4n

  C.y=(3n+8)×1.2n+2.4 D.y=(3n+5)×1.2n-1+2.4

  [答案] A

  5.(2013~2014•濰坊高一檢測(cè))下表顯示出函數(shù)值y隨自變量x變化的一組數(shù)據(jù),由此判斷它最可能的函數(shù)模型是(  )

  x 4 5 6 7 8 9 10

  y 15 17 19 21 23 25 27

  A.一次函數(shù)模型 B.二次函數(shù)模型

  C.指數(shù)函數(shù)模型 D.雙數(shù)函數(shù)模型

  [答案] A

  [解析] 由表知自變量x變化1個(gè)單位時(shí),函數(shù)值y變化2個(gè)單位,所以為一次函數(shù)模型.

  6.一天,亮亮發(fā)燒了,早晨6時(shí)他燒得很厲害,吃過藥后感覺好多了,中午12時(shí)亮亮的體溫基本正常,但是下午18時(shí)他的體溫又開始上升,直到半夜24時(shí)亮亮才感覺身上不那么發(fā)燙了.則下列各圖能基本上反映出亮亮一天(0~24時(shí))體溫的變化情況的是(  )

  [答案] C

  [解析] 從0時(shí)到6時(shí),體溫上升,圖象是上升的,排除選項(xiàng)A;從6時(shí)到12時(shí),體溫下降,圖象是下降的,排除選項(xiàng)B;從12時(shí)到18時(shí),體溫上升,圖象是上升的,排除選項(xiàng)D.

  二、填空題

  7.現(xiàn)測(cè)得(x,y)的兩組值為(1,2),(2,5),現(xiàn)有兩個(gè)擬合模型,甲:y=x2+1,乙:y=3x-1,若又測(cè)得(x,y)的一組對(duì)應(yīng)值為(3,10.2),則應(yīng)選用________作為擬合模型較好.

  [答案] 甲

  [解析] 代入x=3,可得甲y=10,

  乙,y=8.顯然選用甲作為擬合模型較好.

  8.(2013~2014徐州高一檢測(cè))用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超過1%,則至少要清洗的次數(shù)是________(lg2≈0.3010).

  [答案] 4

  [解析] 設(shè)至少要洗x次,則(1-34)x≤1100,

  ∴x≥1lg2≈3.322,所以需4次.

  9.為了預(yù)防流感,某學(xué)校對(duì)教室用藥熏消毒法進(jìn)行消毒,已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(mg)與時(shí)間t(h)成正比;藥物釋放完畢后,y與t的函數(shù)關(guān)系為y=(116)t-a(a為常數(shù))其圖象如圖.根據(jù)圖中提供的信息,回答問題:

  (1)從藥物釋放開始,每立方米空氣中的含藥量y(mg)與時(shí)間t(h)之間的關(guān)系式為________.

  (2)據(jù)測(cè)定,當(dāng)空氣中每立方米的含藥量降到0.25mg以下時(shí),學(xué)生才可進(jìn)入教室,那么從藥物釋放開始至少經(jīng)過______小時(shí),學(xué)生才能回到教室.

  [答案] (1)y=10t    0≤t≤110116t-110 t>110 (2)0.6

  [解析] (1)設(shè)0≤t≤110時(shí),y=kt,

  將(0.1,1)代入得k=10,

  又將(0.1,1)代入y=(116)t-a中,得a=110,

  ∴y=10t   0≤t≤110116t-110t>110.

  (2)令(116)t-110≤0.25得t≥0.6,∴t的最小值為0.6.

  三、解答題

  10.為了保護(hù)學(xué)生的視力,課桌椅子的高度都是按一定的關(guān)系配套設(shè)計(jì)的.研究表明:假設(shè)課桌的高度為ycm,椅子的高度為xcm,則y應(yīng)是x的一次函數(shù),下表列出了兩套符合條件的課桌椅的高度:

  第一套 第二套

  椅子高度x(cm) 40.0 37.0

  桌子高度y(cm) 75.0 70.2

  (1)請(qǐng)你確定y與x的函數(shù)關(guān)系式(不必寫出x的取值范圍).

  (2)現(xiàn)有一把高42.0cm的椅子和一張高78.2cm的課桌,它們是否配套?為什么?

  [解析] (1)根據(jù)題意,課桌高度y是椅子高度x的一次函數(shù),故可設(shè)函數(shù)關(guān)系式為y=kx+b.

  將符合條件的兩套課桌椅的高度代入上述函數(shù)關(guān)系式,

  得40k+b=75,37k+b=70.2,∴k=1.6,b=11.

  ∴y與x的函數(shù)關(guān)系式是y=1.6x+11.

  (2)把x=42代入上述函數(shù)關(guān)系式中,

  有y=1.6×42+11=78.2.

  ∴給出的這套桌椅是配套的.

  [點(diǎn)評(píng)] 本題是應(yīng)用一次函數(shù)模型的問題,利用待定系數(shù)法正確求出k,b是解題的關(guān)鍵.

  11.某地西紅柿從2月1日起開始上市,通過市場(chǎng)調(diào)查,得到西紅柿種植成本Q(單位:元/102kg)與上市時(shí)間t(單位:天)的數(shù)據(jù)如下表:

  時(shí)間t 50 110 250

  種植成本Q 150 108 150

  (1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)函數(shù)描述西紅柿種植成本Q與上市時(shí)間t的變化關(guān)系.

  Q=at+b,Q=at2+bt+c,Q=a•bt,Q=a•logbt.

  (2)利用你選取的函數(shù),求西紅柿種植成本最低時(shí)的上市天數(shù)及最低種植成本.

  [解析] (1)由提供的數(shù)據(jù)知道,描述西紅柿種植成本Q與上市時(shí)間t的變化關(guān)系的函數(shù)不可能是常數(shù)函數(shù),從而用函數(shù)Q=at+b,Q=a•bt,Q=a•logbt中的任意一個(gè)進(jìn)行描述時(shí)都應(yīng)有a≠0,而此時(shí)上述三個(gè)函數(shù)均為單調(diào)函數(shù),這與表格所提供的數(shù)據(jù)不吻合.所以,選取二次函數(shù)Q=at2+bt+c進(jìn)行描述.

  以表格所提供的三組數(shù)據(jù)分別代入Q=at2+bt+c得到,150=2 500a+50b+c,108=12 100a+110b+c,150=62 500a+250b+c.解得a=1200,b=-32,c=4252.

  所以,描述西紅柿種植成本Q與上市時(shí)間t的變化關(guān)系的函數(shù)為Q=1200t2-32t+4252.

  (2)當(dāng)t=--322×1200=150天時(shí),西紅柿種植成本最低為Q=1200•1502-32•150+4252=100 (元/102kg).

  12.某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與與預(yù)測(cè),A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1;B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤和投資單位:萬元).

  (1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;

  (2)已知該企業(yè)已籌集到18萬元資金,并將全部投入A,B兩種產(chǎn)品的生產(chǎn).

 ?、偃羝骄度肷a(chǎn)兩種產(chǎn)品,可獲得多少利潤?

 ?、趩枺喝绻闶菑S長,怎樣分配這18萬元投資,才能使該企業(yè)獲得最大利潤?其最大利潤約為多少萬元?

  [解析] (1)設(shè)A,B兩種產(chǎn)品分別投資x萬元,x≥0,所獲利潤分別為f(x)萬元、g(x)萬元.

  由題意可設(shè)f(x)=k1x,g(x)=k2x.

  根據(jù)圖象可解得f(x)=0.25x(x≥0).

  g(x)=2x(x≥0).

  (2)①由(1)得f(9)=2.25,g(9)=29=6.∴總利潤y=8.25萬元.

 ?、谠O(shè)B產(chǎn)品投入x萬元,A產(chǎn)品投入(18-x)萬元,該企業(yè)可獲總利潤為y萬元.

  則y=14(18-x)+2x,0≤x≤18.

  令x=t,t∈[0,32],

  則y=14(-t2+8t+18)=-14(t-4)2+172.

  ∴當(dāng)t=4時(shí),ymax=172=8.5,此時(shí)x=16,18-x=2.

  ∴當(dāng)A,B兩種產(chǎn)品分別投入2萬元、16萬元時(shí),可使該企業(yè)獲得最大利潤,約為8.5萬元.

19824 安阳县| 迁安市| 拜泉县| 泗洪县| 武夷山市| 麻江县| 南川市| 高阳县| 长治县| 根河市| 涪陵区| 古浪县| 随州市| 康乐县| 扎赉特旗| 仙居县| 内黄县| 华容县| 容城县| 务川| 洛扎县| 台中市| 甘谷县| 治县。| 江山市| 墨玉县| 秀山| 上饶县| 依安县| 商河县| 湖口县| 安阳市| 溆浦县| 隆尧县| 元阳县| 陇西县| 会泽县| 江口县| 象山县| 定边县| 江门市|