初二數(shù)學(xué)復(fù)習(xí)方法歸納
1、強(qiáng)化訓(xùn)練,這個學(xué)期計算類和證明類的題目較多,在復(fù)習(xí)中要加強(qiáng)這方面的訓(xùn)練。特別是一次函數(shù),在復(fù)習(xí)過程中要分類型練習(xí),重點是解題方法的正確選擇同時使學(xué)生養(yǎng)成檢查計算結(jié)果的習(xí)慣。還有幾何證明題,要通過針對性練習(xí)力爭達(dá)到少失分,達(dá)到證明簡練又嚴(yán)謹(jǐn)?shù)男Ч?/p>
2、加強(qiáng)管理嚴(yán)格要求,根據(jù)每個學(xué)生自身情況、學(xué)習(xí)水平嚴(yán)格要求,對應(yīng)知應(yīng)會的內(nèi)容要反復(fù)講解、練習(xí),必須做到學(xué)一點會一點,對接受能力差的學(xué)生課后要加強(qiáng)輔導(dǎo),及時糾正出現(xiàn)的錯誤,平時多小測多檢查。對能力較強(qiáng)的學(xué)生要引導(dǎo)他們多做課外習(xí)題,適當(dāng)提高做題難度。
3、加強(qiáng)證明題的訓(xùn)練,通過近階段的學(xué)習(xí),我發(fā)現(xiàn)學(xué)生對證明題掌握不牢,不會找合適的分析方法,部分學(xué)生看不懂題意,沒有思路。在今后的復(fù)習(xí)中我準(zhǔn)備拿出一定的時間來專項練習(xí)證明題,引導(dǎo)學(xué)生如何弄懂題意、怎樣分析、怎樣寫證明過程。力爭讓學(xué)生把各種類型題做全并抓住其特點。
4、加強(qiáng)成績不理想學(xué)生的輔導(dǎo),制定詳細(xì)的復(fù)習(xí)計劃,對他們要多表揚多鼓勵,調(diào)動他們學(xué)習(xí)的積極性,利用課余時間對他們進(jìn)行輔導(dǎo),輔導(dǎo)時要有耐心,要心平氣和,對不會的知識要多講幾遍,不怕麻煩,直至弄懂弄會。
初二數(shù)學(xué)知識及方法
1.第一、七章是幾何部分。這三章的重點是勾股定理的應(yīng)用以及平行線的性質(zhì)與判別還有三角形內(nèi)角和定理及其應(yīng)用。所以記住性質(zhì)是關(guān)鍵,學(xué)會判定是重點,靈活應(yīng)用是目的。要學(xué)會判定方法的選擇,不同圖形之間的區(qū)別和聯(lián)系要非常熟悉,形成一個有機(jī)整體。對常見的證明題要多練多總結(jié)。2.第四五六章主要是概念的教學(xué),對這幾章的考試題型學(xué)生可能都不熟悉,所以要以與課本同步的訓(xùn)練題型為主,要列表或作圖的,讓學(xué)生積極動手操作,并得出結(jié)論,課堂上教師講評,盡量是精講多練,該動手的要多動手,盡可能的讓學(xué)生自己總結(jié)出論證幾何問題的常用分析方法。3.第二章主要是計算,教師提前先把概念、性質(zhì)、方法綜合復(fù)習(xí),加入適當(dāng)?shù)木毩?xí),在練習(xí)計算。課堂上逐一對易錯題的講解,多強(qiáng)調(diào)解題方法的針對性。最后針對平時練習(xí)中存在的問題,查漏補缺。
初二數(shù)學(xué)有關(guān)角的知識點
(1)角的定義:有公共端點是兩條射線組成的圖形叫做角,其中這個公共端點是角的頂點,這兩條射線是角的兩條邊。
(2)角的表示方法:角可以用一個大寫字母表示,也可以用三個大寫字母表示.其中頂點字母要寫在中間,唯有在頂點處只有一個角的情況,才可用頂點處的一個字母來記這個角,否則分不清這個字母究竟表示哪個角.角還可以用一個希臘字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯?dāng)?shù)字(∠1,∠2…)表示。
(3)平角、周角:角也可以看作是由一條射線繞它的端點旋轉(zhuǎn)而形成的圖形,當(dāng)始邊與終邊成一條直線時形成平角,當(dāng)始 邊與終邊旋轉(zhuǎn)重合時,形成周角。
(4)角的度量:度、分、秒是常用的角的度量單位.1度=60分,即1°=60′,1分=60秒,即1′=60″。
初二數(shù)學(xué)知識點總結(jié)
1、實數(shù)的分類
有理數(shù):整數(shù)(包括:正整數(shù)、0、負(fù)整數(shù))和分?jǐn)?shù)(包括:有限小數(shù)和無限環(huán)循小數(shù))都是有理數(shù)。如:-3,,0.231,0.737373...
無理數(shù):無限不環(huán)循小數(shù)叫做無理數(shù)如:π,-,0.1010010001...(兩個1之間依次多1個0)。
實數(shù):有理數(shù)和無理數(shù)統(tǒng)稱為實數(shù)。
2、無理數(shù)
在理解無理數(shù)時,要抓住"無限不循環(huán)"這一時之,它包含兩層意思:一是無限小數(shù);二是不循環(huán).二者缺一不可.歸納起來有四類:
(1)開方開不盡的數(shù),如等;
(2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等;
(3)有特定結(jié)構(gòu)的數(shù),如0.1010010001...等;
(4)某些三角函數(shù),如sin60o等。
注意:判斷一個實數(shù)的屬性(如有理數(shù)、無理數(shù)),應(yīng)遵循:一化簡,二辨析,三判斷.要注意:"神似"或"形似"都不能作為判斷的標(biāo)準(zhǔn).
3、非負(fù)數(shù):正實數(shù)與零的統(tǒng)稱。(表為:x≥0)
常見的非負(fù)數(shù)有:
性質(zhì):若干個非負(fù)數(shù)的和為0,則每個非負(fù)擔(dān)數(shù)均為0。
4、數(shù)軸:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。
解題時要真正掌握數(shù)形結(jié)合的思想,理解實數(shù)與數(shù)軸的點是一一對應(yīng)的,并能靈活運用。
①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸("三要素")。
②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。
③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。
作用:A.直觀地比較實數(shù)的大小;B.明確體現(xiàn)絕對值意義;C.建立點與實數(shù)的一一對應(yīng)關(guān)系。
5、相反數(shù)
實數(shù)與它的相反數(shù)時一對數(shù)(只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應(yīng)的點關(guān)于原點對稱,如果a與b互為相反數(shù),則有a+b=0,a=-b,反之亦成立。
即:(1)實數(shù)的相反數(shù)是。
初二數(shù)學(xué)上學(xué)期期中知識點
1.基本定義:
⑴全等形:能夠完全重合的兩個圖形叫做全等形。
⑵全等三角形:能夠完全重合的兩個三角形叫做全等三角形。
⑶對應(yīng)頂點:全等三角形中互相重合的頂點叫做對應(yīng)頂點。
⑷對應(yīng)邊:全等三角形中互相重合的邊叫做對應(yīng)邊。
⑸對應(yīng)角:全等三角形中互相重合的角叫做對應(yīng)角。
2.基本性質(zhì):
⑴三角形的穩(wěn)定性:三角形三邊的長度確定了,這個三角形的形狀、大小就全確定,這個性質(zhì)叫做三角形的穩(wěn)定性。
⑵全等三角形的性質(zhì):全等三角形的對應(yīng)邊相等,對應(yīng)角相等。
3.全等三角形的判定定理:
⑴邊邊邊:三邊對應(yīng)相等的兩個三角形全等。
⑵邊角邊(SAS):兩邊和它們的夾角對應(yīng)相等的兩個三角形全等。
⑶角邊角(ASA):兩角和它們的夾邊對應(yīng)相等的兩個三角形全等。
⑷角角邊(AAS):兩角和其中一個角的對邊對應(yīng)相等的兩個三角形全等。
⑸斜邊、直角邊(HL):斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等。
4.角平分線:
⑴畫法:
⑵性質(zhì)定理:角平分線上的點到角的兩邊的距離相等。
⑶性質(zhì)定理的逆定理:角的內(nèi)部到角的兩邊距離相等的點在角的平分線上。
5.證明的基本方法:
⑴明確命題中的已知和求證(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關(guān)系)
⑵根據(jù)題意,畫出圖形,并用數(shù)字符號表示已知和求證。
⑶經(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程。
