丰满少妇女人a毛片视频-酒色成人网-日韩欧美一-日韩精品一区二区av在线观看-成人久久免费-欧美精品一二三四区-国产午夜免费-亚洲男人第一天堂-一区二区三区福利视频-午夜激情影院-av中文天堂在线-免费一区二区-欧美日韩xxx-91区视频-亚洲另类激情专区小说图片-黄色的网站在线观看-香蕉精品在线

高分網(wǎng) > 初中學(xué)習(xí)方法 > 初二學(xué)習(xí)方法 > 初二數(shù)學(xué) >

初二數(shù)學(xué)勾股定理知識點(diǎn)解析

時(shí)間: 文樺2 初二數(shù)學(xué)

  勾股定理是一個(gè)基本的初等幾何定理,直角三角形兩直角邊的平方和等于斜邊的平方。如果直角三角形兩直角邊為a和b,斜邊為c,那么a²+b²=c²,(a,b,c)叫做勾股數(shù)組。今天學(xué)習(xí)啦小編將與大家分享:初二數(shù)學(xué)初二數(shù)學(xué)勾股定理知識點(diǎn)解析。具體內(nèi)容如下:

初二數(shù)學(xué)《勾股定理》知識點(diǎn)解析


  勾股定理現(xiàn)約有400種證明方法,是數(shù)學(xué)定理中證明方法最多的定理之一。勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學(xué)定理之一,用代數(shù)思想解決幾何問題的最重要的工具之一,也是數(shù)形結(jié)合的紐帶之一。“勾三,股四,弦五”是勾股定理的一個(gè)最著名的例子。

  如果 ,則△ABC是鈍角三角形。

  如果 ,則△ABC是銳角三角形。

  《幾何原本》:“直角三角形斜邊上的一個(gè)直邊形,其面積為兩直角邊上兩個(gè)與之相似的直邊形面積之和”。

  利用勾股定理求線段長度這是勾股定理的最基本運(yùn)用,通常是在一個(gè)直角三角形中,已知兩條邊的長度,求第三邊。對于這類問題,可以直接代入公式進(jìn)行計(jì)算,比較容易。在許多題目中,都可能出現(xiàn)這一小步驟來解決許多大題。

  一、利用勾股定理進(jìn)行計(jì)算

  1.求面積

  例1:如圖1,在等腰△ABC中,腰長AB=10cm,底BC=16cm,試求這個(gè)三角形面積。

  析解:若能求出這個(gè)等腰三角形底邊上的高,就可以求出這個(gè)三角形面積。而由等腰三角形"三線合一"性質(zhì),可聯(lián)想作底邊上的高AD,此時(shí)D也為底邊的中點(diǎn),這樣在Rt△ABD中,由勾股定理得AD2=AB2-BD2=102-82=36,所以AD=6cm,所以這個(gè)三角形面積為 ×BC×AD= ×16×6=48 cm2。

  2.求邊長

  例2:如圖2,在△ABC中,∠C=135?,BC= ,AC=2,試求AB的長。

  析解:題中沒有直角三角形,不能直接用勾股定理,可考慮過點(diǎn)B作BD⊥AC,交AC的延長線于D點(diǎn),構(gòu)成Rt△CBD和Rt△ABD。在Rt△CBD中,因?yàn)?ang;ACB=135?,所以∠BCB=45?,所以BD=CD,由BC= ,根據(jù)勾股定理得BD2+CD2=BC2,得BD=CD=1,所以AD= AC+ CD=3。在Rt△ABD中,由勾股定理得AB2= AD2+BD2=32+12=10,所以AB= 。

  點(diǎn)評:這兩道題有一個(gè)共同的特征,都沒有現(xiàn)成的直角三角形,都是通過添加適當(dāng)?shù)妮o助線,巧妙構(gòu)造直角三角形,借助勾股定理來解決問題的,這種解決問題的方法里蘊(yùn)含著數(shù)學(xué)中很重要的轉(zhuǎn)化思想,請同學(xué)們要留心。

  二、利用勾股定理的逆定理判斷直角三角形

  例3:已知a,b,c為△ABC的三邊長,且滿足a2+b2+c2+338=10a+24b+26c。試判斷△ABC的形狀。

  析解:由于所給條件是關(guān)于a,b,c的一個(gè)等式,要判斷△ABC的形狀,設(shè)法求出式中的a,b,c的值或找出它們之間的關(guān)系(相等與否)等,因此考慮利用因式分解將所給式子進(jìn)行變形。因?yàn)閍2+b2+c2+338=10a+24b+26c,所以a2-10a+ b2-24b+c2-26c+338=0,所以a2-10a+25+ b2-24b+144+ c2-26c+169=0,所以(a-5)2+ (b-12)2+ (c-13)2=0。因?yàn)?a-5)2≥0,(b-12)2≥0,(c-13)2≥0,所以a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13。因?yàn)?2+122=132,所以a2+ b2= c2,即△ABC是直角三角形。

  點(diǎn)評:用代數(shù)方法來研究幾何問題是勾股定理的逆定理的"數(shù)形結(jié)合思想"的重要體現(xiàn)。

  三、利用勾股定理說明線段平方和、差之間的關(guān)系

  例4:如圖3,在△ABC中,∠C=90?,D是AC的中點(diǎn),DE⊥AB于E點(diǎn),試說明:BC2=BE2-AE2。

  析解:由于要說明的是線段平方差問題,故可考慮利用勾股定理,注意到∠C=∠BED=∠AED=90?及CD=AD,可連結(jié)BD來解決。因?yàn)?ang;C=90?,所以BD2=BC2+CD2。又DE⊥AB,所以∠BED=∠AED=90?,在Rt△BED中,有BD2=BE2+DE2。在Rt△AED中,有AD2= DE2+AE2。又D是AC的中點(diǎn),所以AD=CD。故BC2+CD2= BC2+ A D2= BC2+ DE2+AE2= BE2+ DE2,所以BE2= BC2+ AE2,所以BC2=BE2-AE2。

  點(diǎn)評:若所給題目的已知或結(jié)論中含有線段的平方和或平方差關(guān)系時(shí),則可考慮構(gòu)造直角三角形,利用勾股定理來解決問題。

15687 文山县| 舒兰市| 辽源市| 西华县| 年辖:市辖区| 岗巴县| 南乐县| 融水| 聂拉木县| 泸水县| 金坛市| 库尔勒市| 南宁市| 柏乡县| 茂名市| 汽车| 武乡县| 宁津县| 新巴尔虎右旗| 青浦区| 河东区| 新丰县| 武胜县| 南涧| 宜兰县| 西藏| 佛教| 平山县| 晋城| 城步| 都兰县| 板桥市| 称多县| 日喀则市| 中卫市| 甘泉县| 色达县| 汉源县| 神农架林区| 工布江达县| 司法|