八年級數學勾股定理教案范文3篇
《勾股定理》是人教版新課標初中八年級下冊數學第十八單元第一節(jié)的內容,以下是學習啦小編要與大家分享的:八年級數學勾股定理教案范文,供大家參考!
八年級數學勾股定理教案范文一
教學目標:
1、知識目標:
(1)掌握;
(2)學會利用進行計算、證明與作圖;
(3)了解有關的歷史.
2、能力目標:
(1)在定理的證明中培養(yǎng)學生的拼圖能力;
(2)通過問題的解決,提高學生的運算能力
3、情感目標:
(1)通過自主學習的發(fā)展體驗獲取數學知識的感受;
(2)通過有關的歷史講解,對學生進行德育教育.
教學重點:及其應用
教學難點:通過有關的歷史講解,對學生進行德育教育
教學用具:直尺,微機
教學方法:以學生為主體的討論探索法
教學過程:
1、新課背景知識復習
(1)三角形的三邊關系
(2)問題:(投影顯示)
直角三角形的三邊關系,除了滿足一般關系外,還有另外的特殊關系嗎?
2、定理的獲得
讓學生用文字語言將上述問題表述出來.
:直角三角形兩直角邊 的平方和等于斜邊 的平方
強調說明:
(1)勾――最短的邊、股――較長的直角邊、弦――斜邊
(2)學生根據上述學習,提出自己的問題(待定)
學習完一個重要知識點,給學生留有一定的時間和機會,提出問題,然后大家共同分析討論.
3、定理的證明方法
方法一:將四個全等的直角三角形拼成如圖1所示的正方形.
方法二:將四個全等的直角三角形拼成如圖2所示的正方形,
方法三:“總統(tǒng)”法.如圖所示將兩個直角三角形拼成直角梯形
以上證明方法都由學生先分組討論獲得,教師只做指導.最后總結說明
4、定理與逆定理的應用
例1 已知:如圖,在△ABC中,∠ACB= ,AB=5cm,BC=3cm,CD⊥AB于D,求CD的長.
解:∵△ABC是直角三角形,AB=5,BC=3,由有
∴ ∠2=∠C
又
∴
∴CD的長是2.4cm
例2 如圖,△ABC中,AB=AC,∠BAC= ,D是BC上任一點,
求證:
證法一:過點A作AE⊥BC于E
則在Rt△ADE中,
又∵AB=AC,∠BAC=
∴AE=BE=CE
即
證法二:過點D作DE⊥AB于E, DF⊥AC于F
則DE∥AC,DF∥AB
又∵AB=AC,∠BAC=
∴EB=ED,FD=FC=AE
在Rt△EBD和Rt△FDC中
在Rt△AED中,
∴
例3 設
求證:
證明:構造一個邊長 的矩形ABCD,如圖
在Rt△ABE中
在Rt△BCF中
在Rt△DEF中
在△BEF中,BE+EF>BF
即
例4 國家電力總公司為了改善農村用電電費過高的現狀,目前正在全國各地農村進行電網改造,某村六組有四個村莊A、B、C、D正好位于一個正方形的四個頂點,現計劃在四個村莊聯合架設一條線路,他們設計了四種架設方案,如圖實線部分.請你幫助計算一下,哪種架設方案最省電線.
解:不妨設正方形的邊長為1,則圖1、圖2中的總線路長分別為
AD+AB+BC=3,AB+BC+CD=3
圖3中,在Rt△DGF中
同理
∴圖3中的路線長為
圖4中,延長EF交BC于H,則FH⊥BC,BH=CH
由∠FBH= 及得:
EA=ED=FB=FC=
∴EF=1-2FH=1-
∴此圖中總線路的長為4EA+EF=
∵3>2.828>2.732
∴圖4的連接線路最短,即圖4的架設方案最省電線.
5、課堂小結:
(1)的內容
(2)的作用
已知直角三角形的兩邊求第三邊
已知直角三角形的一邊,求另兩邊的關系
6、布置作業(yè) :
a、書面作業(yè) P130#1、2、3
b、上交作業(yè) P132#1、3
板書設計
八年級數學勾股定理教案范文二
教學目標:
1、知識目標:
(1)掌握勾股定理;
(2)學會利用勾股定理進行計算、證明與作圖;
(3)了解有關勾股定理的歷史.
2、能力目標:
(1)在定理的證明中培養(yǎng)學生的拼圖能力;
(2)通過問題的解決,提高學生的運算能力
3、情感目標:
(1)通過自主學習的發(fā)展體驗獲取數學知識的感受;
(2)通過有關勾股定理的歷史講解,對學生進行德育教育.
教學重點:勾股定理及其應用
教學難點:通過有關勾股定理的歷史講解,對學生進行德育教育
教學用具:直尺,微機
教學方法:以學生為主體的討論探索法
教學過程:
1、新課背景知識復習
(1)三角形的三邊關系
(2)問題:(投影顯示)
直角三角形的三邊關系,除了滿足一般關系外,還有另外的特殊關系嗎?
2、定理的獲得
讓學生用文字語言將上述問題表述出來.
八年級數學勾股定理教案范文三
一.知識歸納
1.勾股定理
內容:直角三角形兩直角邊的平方和等于斜邊的平方;
表示方法:如果直角三角形的兩直角邊分別為a,b,斜邊為c,那么a2?b2?c2
勾股定理的由來:勾股定理也叫商高定理,在西方稱為畢達哥拉斯定理.我國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊稱為弦.早在三千多年前,周朝數學家商高就提出了“勾三,股四,弦五”形式的勾股定理,后來人們進一步發(fā)現并證明了直角三角形的三邊關系為:兩直角邊的平方和等于斜邊的平方
2.勾股定理的證明
勾股定理的證明方法很多,常見的是拼圖的方法
用拼圖的方法驗證勾股定理的思路是
?、賵D形進過割補拼接后,只要沒有重疊,沒有空隙,面積不會改變
?、诟鶕环N圖形的面積不同的表示方法,列出等式,推導出勾股定理
3.勾股定理的適用范圍
勾股定理揭示了直角三角形三條邊之間所存在的數量關系,它只適用于直角三角形,對于銳角三角形和鈍角三角形的三邊就不具有這一特征,因而在應用勾股定理時,必須明了所考察的對象是直角三角形 4.勾股定理的應用
?、僖阎苯侨切蔚娜我鈨蛇呴L,求第三邊
?、谥乐苯侨切我贿叄傻昧硗鈨蛇呏g的數量關系
?、劭蛇\用勾股定理解決一些實際問題
