初一新生數(shù)學(xué)學(xué)習(xí)方法推薦
一、要不斷培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣和求知渴望
有許多同學(xué)在小學(xué)都曾有過這樣的感受,每當(dāng)你認(rèn)識(shí)了一個(gè)數(shù)學(xué)規(guī)律,解決了一個(gè)較難的應(yīng)用問題,成功的喜悅是無(wú)法用別的東西來(lái)替代的,它激勵(lì)你的學(xué)習(xí)熱情和好奇心,越學(xué)越愛學(xué)。學(xué)習(xí)的興趣和求知欲是要不斷地培養(yǎng)的,況且同學(xué)們剛剛邁進(jìn)“數(shù)學(xué)王國(guó)”的大花園里,許多奧妙無(wú)窮的數(shù)學(xué)問題還等著你們?nèi)W(xué)習(xí)、觀賞、研究。
二、要養(yǎng)成認(rèn)真讀書,獨(dú)立思考的好習(xí)慣
過去有些同學(xué)認(rèn)為:學(xué)習(xí)數(shù)學(xué)主要是靠上課聽老師講明白,而把我們手中的數(shù)學(xué)課本僅僅當(dāng)成做作業(yè)的“習(xí)題集”。這就有兩個(gè)認(rèn)識(shí)問題必須要解決。
一是同學(xué)們要認(rèn)識(shí)到,我們的教科書記載了由數(shù)學(xué)工作者整理的、大家必須掌握的基礎(chǔ)知識(shí),以及如何運(yùn)用這些知識(shí)解決問題等。因此,要想真正獲得知識(shí),認(rèn)真讀書、培養(yǎng)自學(xué)能力是一條根本途徑。我們希望同學(xué)們?cè)谥袑W(xué)老師的指導(dǎo)、幫助下,從過去不讀書、不會(huì)讀書轉(zhuǎn)變?yōu)閻圩x書、學(xué)會(huì)讀書,進(jìn)而養(yǎng)成認(rèn)真讀書的好習(xí)慣。
二是同學(xué)們還要認(rèn)識(shí)到,許多數(shù)學(xué)問題不是單靠老師講明白的,主要是靠同學(xué)們自己想明白的。孔子日:”學(xué)而不思則罔,思而不學(xué)則殆?!边@句話極力精辟地闡述了學(xué)習(xí)和思考的辯證關(guān)系,即要學(xué)而恩、又要思而學(xué)。大家學(xué)習(xí)數(shù)學(xué)的過程主要是自己不斷深入思考的過程。我們希望大家今后在上數(shù)學(xué)課時(shí)。無(wú)論老師講新課,還是復(fù)習(xí)、講評(píng)作業(yè)練習(xí),都要使自己的注意力高度集中,邊聽邊積極思考問題,捕捉有用的信息,隨時(shí)抓住萌發(fā)出的靈感。對(duì)于沒弄明白的問題,一定要及時(shí)、主動(dòng)去解決它,直到弄懂為止。
初中數(shù)學(xué)相似三角形知識(shí)點(diǎn)
考點(diǎn)1:相似三角形的概念、相似比的意義、畫圖形的放大和縮小
考核要求:
(1)理解相似形的概念;
(2)掌握相似圖形的特點(diǎn)以及相似比的意義,能將已知圖形按照要求放大和縮小。
考點(diǎn)2:平行線分線段成比例定理、三角形一邊的平行線的有關(guān)定理
考核要求:理解并利用平行線分線段成比例定理解決一些幾何證明和幾何計(jì)算。
注意:被判定平行的一邊不可以作為條件中的對(duì)應(yīng)線段成比例使用。
考點(diǎn)3:相似三角形的概念
考核要求:以相似三角形的概念為基礎(chǔ),抓住相似三角形的特征,理解相似三角形的定義。
考點(diǎn)4:相似三角形的判定和性質(zhì)及其應(yīng)用
考核要求:熟練掌握相似三角形的判定定理(包括預(yù)備定理、三個(gè)判定定理、直角三角形相似的判定定理)和性質(zhì),并能較好地應(yīng)用。
數(shù)學(xué)初中知識(shí)點(diǎn)歸納
1.過兩點(diǎn)有且只有一條直線
2.兩點(diǎn)之間線段最短
3.同角或等角的補(bǔ)角相等
4.同角或等角的余角相等
5.過一點(diǎn)有且只有一條直線和已知直線垂直
6.直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7.平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行
8.如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9.同位角相等,兩直線平行
10.內(nèi)錯(cuò)角相等,兩直線平行
11.同旁內(nèi)角互補(bǔ),兩直線平行
12.兩直線平行,同位角相等
13.兩直線平行,內(nèi)錯(cuò)角相等
14.兩直線平行,同旁內(nèi)角互補(bǔ)
15.定理三角形兩邊的和大于第三邊
16.推論三角形兩邊的差小于第三邊
17.三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°
18.推論1直角三角形的兩個(gè)銳角互余
19.推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
20.推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
21.全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
22.邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
23.角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等
24.推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
25.邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
26.斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
27.定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
28.定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
29.角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30.等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)
31.推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32.等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33.推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°
34.等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
35.推論1三個(gè)角都相等的三角形是等邊三角形
36.推論2有一個(gè)角等于60°的等腰三角形是等邊三角形
37.在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半
38.直角三角形斜邊上的中線等于斜邊上的一半
39.定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
40.逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
41.線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42.定理1關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形
43.定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線
44.定理3兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上
45.逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱
46.勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
47.勾股定理的逆定理如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a^2+b^2=c^2,那么這個(gè)三角形是直角三角形
48.定理四邊形的內(nèi)角和等于360°
49.四邊形的外角和等于360°
50.多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°
51.推論任意多邊的外角和等于360°
數(shù)學(xué)初一上冊(cè)知識(shí)點(diǎn)
1.有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);π不是有理數(shù);
(2)注意:有理數(shù)中,1、0、-1是三個(gè)特殊的數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,這四個(gè)區(qū)域的數(shù)也有自己的特性;
2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線.
3.相反數(shù):
(1)只有符號(hào)不同的兩個(gè)數(shù),我們說其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;
(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;
4.絕對(duì)值:
(1)正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;
(2)絕對(duì)值可表示為:
絕對(duì)值的問題經(jīng)常分類討論;
(3)a|是重要的非負(fù)數(shù),即|a|≥0;注意:|a|?|b|=|a?b|,
5.有理數(shù)比大?。?1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而小;(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.
數(shù)學(xué)初一必考知識(shí)點(diǎn)
圖形初步認(rèn)識(shí)
1.我們把實(shí)物中抽象的各種圖形統(tǒng)稱為幾何圖形。
2.有些幾何圖形(如長(zhǎng)方體.正方體.圓柱.圓錐.球等)的各部分不都在同一平面內(nèi),它們是立體圖形。
3.有些幾何圖形(如線段.角.三角形.長(zhǎng)方形.圓等)的各部分都在同一平面內(nèi),它們是平面圖形。
4.將由平面圖形圍成的立體圖形表面適當(dāng)剪開,可以展開成平面圖形,這樣的平面圖形稱為相應(yīng)立體圖形的展開圖。
5.幾何體簡(jiǎn)稱為體。
6.包圍著體的是面,面有平的面和曲的面兩種。
7.面與面相交的地方形成線,線和線相交的地方是點(diǎn)。
8.點(diǎn)動(dòng)成面,面動(dòng)成線,線動(dòng)成體。
9.經(jīng)過探究可以得到一個(gè)基本事實(shí):經(jīng)過兩點(diǎn)有一條直線,并且只有一條直線。簡(jiǎn)述為:兩點(diǎn)確定一條直線(公理)。
10.當(dāng)兩條不同的直線有一個(gè)公共點(diǎn)時(shí),我們就稱這兩條直線相交,這個(gè)公共點(diǎn)叫做它們的交點(diǎn)。
11.點(diǎn)M把線段AB分成相等的兩條線段AM和MB,點(diǎn)M叫做線段AB的中點(diǎn)。
12.經(jīng)過比較,我們可以得到一個(gè)關(guān)于線段的基本事實(shí):兩點(diǎn)的所有連線中,線段最短。簡(jiǎn)單說成:兩點(diǎn)之間,線段最短。(公理)
13.連接兩點(diǎn)間的線段的長(zhǎng)度,叫做這兩點(diǎn)的距離。
整式的加減
1.都是數(shù)或字母的積的式子叫做單項(xiàng)式,單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式。
2.單項(xiàng)式中的數(shù)字因數(shù)叫做這個(gè)單項(xiàng)式的系數(shù)。
3.一個(gè)單項(xiàng)式中,所有字母的指數(shù)的和叫做這個(gè)單項(xiàng)式的次數(shù)。
4.幾個(gè)單項(xiàng)的和叫做多項(xiàng)式,其中,每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng),不含字母的項(xiàng)叫做常數(shù)項(xiàng)。
5.多項(xiàng)式里次數(shù)項(xiàng)的次數(shù),叫做這個(gè)多項(xiàng)式的次數(shù)。
6.把多項(xiàng)式中的同類項(xiàng)合并成一項(xiàng),叫做合并同類項(xiàng)。
合并同類項(xiàng)后,所得項(xiàng)的系數(shù)是合并前各同類項(xiàng)的系數(shù)的和,且字母部分不變。
7.如果括號(hào)外的因數(shù)是正數(shù),去括號(hào)后原括號(hào)內(nèi)各項(xiàng)的符號(hào)與原來(lái)的符號(hào)相同。
8.如果括號(hào)外的因數(shù)是負(fù)數(shù),去括號(hào)后原括號(hào)內(nèi)各項(xiàng)的符號(hào)與原來(lái)的符號(hào)相反。
9.一般地,幾個(gè)整式相加減,如果有括號(hào)就先去括號(hào),然后再合并同類項(xiàng)。
