智力數(shù)學(xué)趣味題及答案集錦
智力也叫智能,是人們認(rèn)識(shí)客觀事物并運(yùn)用知識(shí)解決實(shí)際問題的能力。智力包括多個(gè)方面,如觀察力、記憶力、想象力、分析判斷能力、思維能力、應(yīng)變能力等。智力的高低通常用智力商數(shù)來表示,是用以標(biāo)示智力發(fā)展水平。特別需要指出的是智力不指代智慧,兩者意義有一定的差別。以下是學(xué)習(xí)啦網(wǎng)小編為大家整理的提高智力的智力數(shù)學(xué)趣味題及答案:
一、容斥原理
容斥原理關(guān)鍵就兩個(gè)公式:
1. 兩個(gè)集合的容斥關(guān)系公式:A+B=A∪B+A∩B
2. 三個(gè)集合的容斥關(guān)系公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C
請(qǐng)看例題:
【例題1】某大學(xué)某班學(xué)生總數(shù)是32人,在第一次考試中有26人及格,在第二次考試中有24人及格,若兩次考試中,都沒及格的有4人,那么兩次考試都及格的人數(shù)是( )
A.22 B.18 C.28 D.26
【解析】設(shè)A=第一次考試中及格的人數(shù)(26人),B=第二次考試中及格的人數(shù)(24人),顯然,A+B=26+24=50; A∪B=32-4=28(即至少有一次考試及格的人數(shù)),則根據(jù)A∩B=A+B-A∪B=50-28=22。答案為A。
【例題2】電視臺(tái)向100人調(diào)查前一天收看電視的情況,有62人看過2頻道,34人看過8頻道,11人兩個(gè)頻道都看過。問兩個(gè)頻道都沒看過的有多少人?
【解析】設(shè)A=看過2頻道的人(62),B=看過8頻道的人(34),顯然,A+B=62+34=96;
A∩B=兩個(gè)頻道都看過的人(11),則根據(jù)公式A∪B= A+B-A∩B=96-11=85,所以,兩個(gè)頻道都沒看過的人數(shù)為100-85=15人。
二、作對(duì)或做錯(cuò)題問題
【例題】某次考試由30道判斷題,每作對(duì)一道題得4分,做錯(cuò)一題倒扣2分,小周共得96分,問他做錯(cuò)了多少道題?
A.12 B.4 C.2 D.5
【解析】
方法一
假設(shè)某人在做題時(shí)前面24道題都做對(duì)了,這時(shí)他應(yīng)該得到96分,后面還有6道題,如果讓這最后6道題的得分為0,即可滿足題意.這6道題的得分怎么才能為0分呢?根據(jù)規(guī)則,只要作對(duì)2道題,做錯(cuò)4道題即可,據(jù)此我們可知做錯(cuò)的題為4道,作對(duì)的題為26道.
方法二
作對(duì)一道可得4分,如果每作對(duì)反而扣2分,這一正一負(fù)差距就變成了6分.30道題全做對(duì)可得120分,而現(xiàn)在只得到96分,意味著差距為24分,用24÷6=4即可得到做錯(cuò)的題,所以可知選擇B
三、植樹問題
核心要點(diǎn)提示:①總路線長(zhǎng)②間距(棵距)長(zhǎng)③棵數(shù)。只要知道三個(gè)要素中的任意兩個(gè)要素,就可以求出第三個(gè)。
【例題1】李大爺在馬路邊散步,路邊均勻的栽著一行樹,李大爺從第一棵數(shù)走到底15棵樹共用了7分鐘,李大爺又向前走了幾棵樹后就往回走,當(dāng)他回到第5棵樹是共用了30分鐘。李大爺步行到第幾棵數(shù)時(shí)就開始往回走?
A.第34棵 B.第33棵 C.第32棵 D.第31棵
解析:李大爺從第一棵數(shù)走到第15棵樹共用了7分鐘,也即走14個(gè)棵距用了7分鐘,所以走每個(gè)棵距用0.5分鐘。當(dāng)他回到第5棵樹時(shí),共用了30分鐘,計(jì)共走了30÷0.5=60個(gè)棵距,所以答案為B。第一棵到第33棵共32個(gè)棵距,第33可回到第5棵共28個(gè)棵距,32+28=60個(gè)棵距。
【例題2】為了把2008年北京奧運(yùn)會(huì)辦成綠色奧運(yùn),全國(guó)各地都在加強(qiáng)環(huán)保,植樹造林。某單位計(jì)劃在通往兩個(gè)比賽場(chǎng)館的兩條路的(不相交)兩旁栽上樹,現(xiàn)運(yùn)回一批樹苗,已知一條路的長(zhǎng)度是另一條路長(zhǎng)度的兩倍還多6000米,若每隔4米栽一棵,則少2754棵;若每隔5米栽一棵,則多396棵,則共有樹苗:( )
A.8500棵 B.12500棵 C.12596棵 D.13000棵
解析:設(shè)兩條路共有樹苗ⅹ棵,根據(jù)栽樹原理,路的總長(zhǎng)度是不變的,所以可根據(jù)路程相等列出方程:(ⅹ+2754-4)×4=(ⅹ-396-4)×5(因?yàn)?條路共栽4排,所以要減4)(一排樹有n棵,則有n-1個(gè)間距,所以x+2754-4為總共兩條路四排樹的間距個(gè)數(shù),乘以4就為這兩條路總長(zhǎng)度的2倍,同理間距為5米時(shí)得到的也是這兩條路的2倍長(zhǎng)度)
解得ⅹ=13000,即選擇D。
四、和差倍問題
核心要點(diǎn)提示:和、差、倍問題是已知大小兩個(gè)數(shù)的和或差與它們的倍數(shù)關(guān)系,求大小兩個(gè)數(shù)的值。(和+差)÷2=較大數(shù);(和—差)÷2=較小數(shù);較大數(shù)—差=較小數(shù)。
【例題】甲班和乙班共有圖書160本,甲班的圖書是乙班的3倍,甲班和乙班各有圖書多少本?
解析:設(shè)乙班的圖書本數(shù)為1份,則甲班和乙班圖書本書的合相當(dāng)于乙班圖書本數(shù)的4倍。乙班160÷(3+1)=40(本),甲班40×3=120(本)。
附:數(shù)學(xué)統(tǒng)計(jì)中的十字交叉法
【例題】某高校2006年度畢業(yè)學(xué)生7650名,比上年度增長(zhǎng)2% 。其中本科畢業(yè)生比上年度減少2%。而研究生畢業(yè)生數(shù)量比上年度增加10 %,那么這所高校今年畢業(yè)的本科生有多少人?
【分析】根據(jù)題意,可以得出上一個(gè)年度的學(xué)生情況!以下均省略百分號(hào)!
本科 98 \ / 8
總和 102
碩士 110 / \ 4
所以,本科和碩士的比例是2:1.
那么根據(jù)題意,上一年度的畢業(yè)生有7650÷1.02=7500
而本科:碩士=2:1
所以上一年度有本科7500*2/3=5000
本年度本科生減少了2%,所以就有5000×98%=4900
五.濃度問題
【例1】甲杯中有濃度為17%的溶液400克,乙杯中有濃度為23%的溶液600克?,F(xiàn)在從甲、乙兩杯中取出相同總量的溶液,把從甲杯中取出的倒入乙杯中,把從乙杯中取出的倒入甲杯中,使甲、乙兩杯溶液的濃度相同。問現(xiàn)在兩倍溶液的濃度是多少( )
A.20% B.20.6% C.21.2% D.21.4%
【答案】B。
【解析】這道題要解決兩個(gè)問題:
(1)濃度問題的計(jì)算方法
濃度問題在國(guó)考、京考當(dāng)中出現(xiàn)次數(shù)很少,但是在浙江省的考試中,每年都會(huì)遇到濃度問題。這類問題的計(jì)算需要掌握的最基本公式是
(2)本題的陷阱條件
“現(xiàn)在從甲、乙兩杯中取出相同總量的溶液,把從甲杯中取出的倒入乙杯中,把從乙杯中取出的倒入甲杯中,使甲、乙兩倍溶液的濃度相同。”這句話描述了一個(gè)非常復(fù)雜的過程,令很多人望而卻步。然而,只要抓住了整個(gè)過程最為核心的結(jié)果——“甲、乙兩杯溶液的濃度相同”這個(gè)條件,問題就變得很簡(jiǎn)單了。
因?yàn)閮杀芤鹤罱K濃度相同,因此整個(gè)過程可以等效為——將甲、乙兩杯溶液混合均勻之后,再分開成為400克的一杯和600克的一杯。因此這道題就簡(jiǎn)單的變成了“甲、乙兩杯溶液混合之后的濃度是多少”這個(gè)問題了。
根據(jù)濃度計(jì)算公式可得,所求濃度為:
如果本題采用題設(shè)條件所述的過程來進(jìn)行計(jì)算,將相當(dāng)繁瑣。
六.行程問題
【例1】 2某單位圍墻外面的公路圍成了邊長(zhǎng)為300米的正方形,甲乙兩人分別從兩個(gè)對(duì)角沿逆時(shí)針同時(shí)出發(fā),如果甲每分鐘走90米,乙每分鐘走70米,那么經(jīng)過( )甲才能看到乙
A.16分40秒 B.16分 C.15分 D.14分40秒
【答案】A。
【解析】這道題是一道較難的行程問題,其難點(diǎn)在于“甲看到乙”這個(gè)條件。有一種錯(cuò)誤的理解就是“甲看到乙”則是甲與乙在同一邊上的時(shí)候甲就能看到乙,也就是甲、乙之間的距離小于300米時(shí)候甲就能看到乙了,其實(shí)不然??紤]一種特殊情況,就是甲、乙都來到了這個(gè)正方形的某個(gè)角旁邊,但是不在同一條邊上,這個(gè)時(shí)候雖然甲、乙之間距離很短,但是這時(shí)候甲還是不能看到乙。由此看出這道題的難度——甲看到乙的時(shí)候兩人之間的距離是無法確定的。
有兩種方法來“避開”這個(gè)難點(diǎn)——
解法一:借助一張圖來求解
雖然甲、乙兩人沿正方形路線行走,但是行進(jìn)過程完全可以等效的視為兩人沿著直線行走,甲、乙的初始狀態(tài)如圖所示。
圖中的每一個(gè)“格檔”長(zhǎng)為300米,如此可以將題目化為這樣的問題“經(jīng)過多長(zhǎng)時(shí)間,甲、乙能走入同一格檔?”
觀察題目選項(xiàng),發(fā)現(xiàn)有15分鐘、16分鐘兩個(gè)整數(shù)時(shí)間,比較方便計(jì)算。因此代入15分鐘值試探一下經(jīng)過15分鐘甲、乙的位置關(guān)系。經(jīng)過15分鐘之后,甲、乙分別前進(jìn)了
90×15=1350米=(4×300+150)米
70×15=1050米=(3×300+150)米
也就是說,甲向前行進(jìn)了4個(gè)半格檔,乙向前行進(jìn)了3個(gè)半格檔,此時(shí)兩人所在的地點(diǎn)如圖所示。
甲、乙兩人恰好分別在兩個(gè)相鄰的格檔的中點(diǎn)處。這時(shí)甲、乙兩人相距300米,但是很明顯甲還看不到乙,正如解析開始處所說,如果單純的認(rèn)為甲、乙距離差為300米時(shí),甲就能看到乙的話就會(huì)出錯(cuò)。
考慮由于甲行走的比乙快,因此當(dāng)甲再行走150米,來到拐彎處的時(shí)候,乙行走的路程還不到150米。此時(shí)甲只要拐過彎就能看到乙。因此再過150/90=1分40秒之后,甲恰好拐過彎看到乙。所以甲從出發(fā)到看到乙,總共需要16分40秒,甲就能看到乙。
這種解法不是常規(guī)解法,數(shù)學(xué)基礎(chǔ)較為薄弱的考生可能很難想到。
解法二:考慮實(shí)際情況
由于甲追乙,而且甲的速度比乙快,因此實(shí)際情況下,甲能夠看到乙恰好是當(dāng)甲經(jīng)過了正方形的一個(gè)頂點(diǎn)之后就能看到乙了。也就是說甲從一個(gè)頂點(diǎn)出發(fā),在到某個(gè)頂點(diǎn)時(shí),甲就能看到乙了。
題目要求的是甲運(yùn)動(dòng)的時(shí)間,根據(jù)上面的分析可知,經(jīng)過這段時(shí)間之后,甲正好走了整數(shù)個(gè)正方形的邊長(zhǎng),轉(zhuǎn)化成數(shù)學(xué)運(yùn)算式就是
90×t=300×n
其中,t是甲運(yùn)動(dòng)的時(shí)間,n是一個(gè)整數(shù)。帶入題目四個(gè)選項(xiàng),經(jīng)過檢驗(yàn)可知,只有A選項(xiàng)16分40秒過后,甲運(yùn)動(dòng)的距離為
90×(16×60+40)/60=1500=300×5
符合“甲正好走了整數(shù)個(gè)正方形的邊長(zhǎng)”這個(gè)要求,它是正確答案。
七.抽屜問題
三個(gè)例子:
(1)3個(gè)蘋果放到2個(gè)抽屜里,那么一定有1個(gè)抽屜里至少有2個(gè)蘋果。
(2)5塊手帕分給4個(gè)小朋友,那么一定有1個(gè)小朋友至少拿了2塊手帕。
(3)6只鴿子飛進(jìn)5個(gè)鴿籠,那么一定有1個(gè)鴿籠至少飛進(jìn)2只鴿子。
我們用列表法來證明例題(1):
放 法
抽 屜 ①種 ②種 ③種 ④種
第1個(gè)抽屜 3個(gè) 2個(gè) 1個(gè) 0個(gè)
第2個(gè)抽屜 0個(gè) 1個(gè) 2個(gè) 3個(gè)
從上表可以看出,將3個(gè)蘋果放在2個(gè)抽屜里,共有4種不同的放法。
第①、②兩種放法使得在第1個(gè)抽屜里,至少有2個(gè)蘋果;第③、④兩種放法使得在第2個(gè)抽屜里,至少有2個(gè)蘋果。
即:可以肯定地說,3個(gè)蘋果放到2個(gè)抽屜里,一定有1個(gè)抽屜里至少有2個(gè)蘋果。
由上可以得出:
題 號(hào) 物 體 數(shù) 量 抽屜數(shù) 結(jié) 果
(1) 蘋 果 3個(gè) 放入2個(gè)抽屜 有一個(gè)抽屜至少有2個(gè)蘋果
(2) 手 帕 5塊 分給4個(gè)人 有一人至少拿了2塊手帕
(3) 鴿 子 6只 飛進(jìn)5個(gè)籠子 有一個(gè)籠子至少飛進(jìn)2只鴿
上面三個(gè)例子的共同特點(diǎn)是:物體個(gè)數(shù)比抽屜個(gè)數(shù)多一個(gè),那么有一個(gè)抽屜至少有2個(gè)這樣的物體。從而得出:
抽屜原理1:把多于n個(gè)的物體放到n個(gè)抽屜里,則至少有一個(gè)抽屜里有2個(gè)或2個(gè)以上的物體。
再看下面的兩個(gè)例子:
(4)把30個(gè)蘋果放到6個(gè)抽屜中,問:是否存在這樣一種放法,使每個(gè)抽屜中的蘋果數(shù)都小于等于5?
(5)把30個(gè)以上的蘋果放到6個(gè)抽屜中,問:是否存在這樣一種放法,使每個(gè)抽屜中的蘋果數(shù)都小于等于5?
解答:(4)存在這樣的放法。即:每個(gè)抽屜中都放5個(gè)蘋果;(5)不存在這樣的放法。即:無論怎么放,都會(huì)找到一個(gè)抽屜,它里面至少有6個(gè)蘋果。
從上述兩例中我們還可以得到如下規(guī)律:
抽屜原理2:把多于m×n個(gè)的物體放到n個(gè)抽屜里,則至少有一個(gè)抽屜里有m+1個(gè)或多于m+l個(gè)的物體。
可以看出,“原理1”和“原理2”的區(qū)別是:“原理1”物體多,抽屜少,數(shù)量比較接近;“原理2”雖然也是物體多,抽屜少,但是數(shù)量相差較大,物體個(gè)數(shù)比抽屜個(gè)數(shù)的幾倍還多幾。
以上兩個(gè)原理,就是我們解決抽屜問題的重要依據(jù)。抽屜問題可以簡(jiǎn)單歸結(jié)為一句話:有多少個(gè)蘋果,多少個(gè)抽屜,蘋果和抽屜之間的關(guān)系。解此類問題的重點(diǎn)就是要找準(zhǔn)“抽屜”,只有“抽屜”找準(zhǔn)了,“蘋果”才好放。
我們先從簡(jiǎn)單的問題入手:
(1)3只鴿子飛進(jìn)了2個(gè)鳥巢,則總有1個(gè)鳥巢中至少有幾只鴿子?(答案:2只)
(2)把3本書放進(jìn)2個(gè)書架,則總有1個(gè)書架上至少放著幾本書?(答案:2本)
(3)把3封信投進(jìn)2個(gè)郵筒,則總有1個(gè)郵筒投進(jìn)了不止幾封信?(答案:1封)
(4)1000只鴿子飛進(jìn)50個(gè)巢,無論怎么飛,我們一定能找到一個(gè)含鴿子最多的巢,它里面至少含有幾只鴿子?(答案:1000÷50=20,所以答案為20只)
(5)從8個(gè)抽屜中拿出17個(gè)蘋果,無論怎么拿。我們一定能找到一個(gè)拿蘋果最多的抽屜,從它里面至少拿出了幾個(gè)蘋果?(答案:17÷8=2……1,2+1=3,所以答案為3)
(6)從幾個(gè)抽屜中(填最大數(shù))拿出25個(gè)蘋果,才能保證一定能找到一個(gè)抽屜,從它當(dāng)中至少拿了7個(gè)蘋果?(答案:25÷□=6……□,可見除數(shù)為4,余數(shù)為1,抽屜數(shù)為4,所以答案為4個(gè))
抽屜問題又稱為鳥巢問題、書架問題或郵筒問題。如上面(1)、(2)、(3)題,講的就是這些原理。上面(4)、(5)、(6)題的規(guī)律是:物體數(shù)比抽屜數(shù)的幾倍還多幾的情況,可用“蘋果數(shù)”除以“抽屜數(shù)”,若余數(shù)不為零,則“答案”為商加1;若余數(shù)為零,則“答案”為商。其中第(6)題是已知“蘋果數(shù)”和“答案”來求“抽屜數(shù)”。
抽屜問題的用處很廣,如果能靈活運(yùn)用,可以解決一些看上去相當(dāng)復(fù)雜、覺得無從下手,實(shí)際上卻是相當(dāng)有趣的數(shù)學(xué)問題。
例1:某班共有13個(gè)同學(xué),那么至少有幾人是同月出生?( )
A. 13 B. 12 C. 6 D. 2
