丰满少妇女人a毛片视频-酒色成人网-日韩欧美一-日韩精品一区二区av在线观看-成人久久免费-欧美精品一二三四区-国产午夜免费-亚洲男人第一天堂-一区二区三区福利视频-午夜激情影院-av中文天堂在线-免费一区二区-欧美日韩xxx-91区视频-亚洲另类激情专区小说图片-黄色的网站在线观看-香蕉精品在线

高分網(wǎng) > 學(xué)科學(xué)習(xí)方法 > 數(shù)學(xué)學(xué)習(xí)方法 >

數(shù)學(xué)教案:圓的周長、弧長

時間: 春燕2 數(shù)學(xué)學(xué)習(xí)方法

  正多邊形的邊長、半徑、邊心距和中心角、周長、面積等有關(guān)的計算問題轉(zhuǎn)化為解直角三角形的問題。下面是學(xué)習(xí)啦小編整理了數(shù)學(xué)教案:圓的周長、弧長,希望對你有幫助。

  數(shù)學(xué)教案:圓的周長、弧長

  圓周長、弧長(一)

  數(shù)學(xué)圓的周長、弧長教案【教學(xué)目標】

  1、初步掌握圓周長、弧長公式;

  2、通過弧長公式的推導(dǎo),培養(yǎng)學(xué)生探究新問題的能力;

  3、調(diào)動學(xué)生的積極性,培養(yǎng)學(xué)生的鉆研精神;

  4、進一步培養(yǎng)學(xué)生從實際問題中抽象出數(shù)學(xué)模型的能力,綜合運用所學(xué)知識分析問題和解決問題的能力.

  教學(xué)重點:弧長公式.

  教學(xué)難點 :正確理解弧長公式.

  數(shù)學(xué)圓的周長、弧長教案【教學(xué)活動設(shè)計】

  (一)復(fù)習(xí)(圓周長)

  已知⊙O半徑為R,⊙O的周長C是多少?

  C=2πR

  這里π=3.14159…,這個無限不循環(huán)的小數(shù)叫做圓周率.

  由于生產(chǎn)、生活實際中常遇到有關(guān)弧的長度計算,那么怎樣求一段弧的長度呢?

  提出新問題:已知⊙O半徑為R,求n°圓心角所對弧長.

  (二)探究新問題、歸納結(jié)論

  教師組織學(xué)生探討(因為問題并不難,學(xué)生完全可以自己研究得到公式).

  數(shù)學(xué)圓的周長、弧長教案【研究步驟】

  (1)圓周長C=2πR;

  (2)1°圓心角所對弧長=;

  (3)n°圓心角所對的弧長是1°圓心角所對的弧長的n倍;

  (4)n°圓心角所對弧長=.

  歸納結(jié)論:若設(shè)⊙O半徑為R, n°圓心角所對弧長l,則

  (弧長公式)

  (三)理解公式、區(qū)分概念

  教師引導(dǎo)學(xué)生理解:

  (1)在應(yīng)用弧長公式 進行計算時,要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的;

  (2)公式可以理解記憶(即按照上面推導(dǎo)過程記憶);

  (3)區(qū)分弧、弧的度數(shù)、弧長三概念.度數(shù)相等的弧,弧長不一定相等,弧長相等的弧也不一定是等孤,而只有在同圓或等圓中,才可能是等弧.

  (四)初步應(yīng)用

  例1、已知:如圖,圓環(huán)的外圓周長C1=250cm,內(nèi)圓周長C2=150cm,求圓環(huán)的寬度d (精確到1mm).

  分析:(1)圓環(huán)的寬度與同心圓半徑有什么關(guān)系?

  (2)已知周長怎樣求半徑?

  (學(xué)生獨立完成)

  解:設(shè)外圓的半徑為R1,內(nèi)圓的半徑為R2,則

  d= .

  ∵ , ,

  ∴ (cm)

  例2,彎制管道時,先按中心線計算展直長度,再下料,試計算圖所示管道的展直長度L(單位:mm,精確到1mm)

  教師引導(dǎo)學(xué)生把實際問題抽象成數(shù)學(xué)問題,滲透數(shù)學(xué)建模思想.

  解:由弧長公式,得

  (mm)

  所要求的展直長度

  L (mm)

  答:管道的展直長度為2970mm.

  課堂練習(xí):P176練習(xí)1、4題.

  (五)總結(jié)

  知識:圓周長、弧長公式;圓周率概念;

  能力:探究問題的方法和能力,弧長公式的記憶方法;初步應(yīng)用弧長公式解決問題.

  (六)作業(yè) 教材P176練習(xí)2、3;P186習(xí)題3.

  圓周長、弧長(二)

  教學(xué)目標 :

  1、應(yīng)用圓周長、弧長公式綜合圓的有關(guān)知識解答問題;

  2、培養(yǎng)學(xué)生綜合運用知識的能力和數(shù)學(xué)模型的能力;

  3、通過應(yīng)用題的教學(xué),向?qū)W生滲透理論聯(lián)系實際的觀點.

  教學(xué)重點:靈活運用弧長公式解有關(guān)的應(yīng)用題.

  教學(xué)難點 :建立數(shù)學(xué)模型.

  教學(xué)活動設(shè)計:

  (一)靈活運用弧長公式

  例1、填空:

  (1)半徑為3cm,120°的圓心角所對的弧長是_______cm;

  (2)已知圓心角為150°,所對的弧長為20π,則圓的半徑為_______;

  (3)已知半徑為3,則弧長為π的弧所對的圓心角為_______.

  (學(xué)生獨立完成,在弧長公式中l(wèi)、n、R知二求一.)

  答案:(1)2π;(2)24;(3)60°.

  說明:使學(xué)生靈活運用公式,為綜合題目作準備.

  練習(xí):P196練習(xí)第1題

  (二)綜合應(yīng)用題

  例2、如圖,兩個皮帶輪的中心的距離為2.1m,直徑分別為0.65m和0.24m.(1)求皮帶長(保留三個有效數(shù)字);(2)如果小輪每分轉(zhuǎn)750轉(zhuǎn),求大輪每分約轉(zhuǎn)多少轉(zhuǎn).

  教師引導(dǎo)學(xué)生建立數(shù)學(xué)模型:

  分析:(1)皮帶長包括哪幾部分(+DC++AB);

  (2)“兩個皮帶輪的中心的距離為2.1m”,給我們解決此題提供了什么數(shù)學(xué)信息?

  (3)AB、CD與⊙O1、⊙O2具有什么位置關(guān)系?AB與CD具有什么數(shù)量關(guān)系?根據(jù)是什么?(AB與CD是⊙O1與⊙O2的公切線,AB=CD,根據(jù)的是兩圓外公切線長相等.)

  (4)如何求每一部分的長?

  這里給學(xué)生考慮的時間和空間,充分發(fā)揮學(xué)生的主體作用.

  解:(1)作過切點的半徑O1A、O1D、O2B、O2C,作O2E⊥O1A,垂足為E.

  ∵O1O2=2.1, , ,

  ∴ ,

  ∴ (m)

  ∵ ,∴ ,

  ∴的長l1 (m).

  ∵, ∴的長(m).

  ∴皮帶長l=l1+l2+2AB=5.62(m).

  (2)設(shè)大輪每分鐘轉(zhuǎn)數(shù)為n,則

  , (轉(zhuǎn))

  答:皮帶長約5.63m,大輪每分鐘約轉(zhuǎn)277轉(zhuǎn).

  說明:通過本題滲透數(shù)學(xué)建模思想,弧長公式的應(yīng)用,求兩圓公切線的方法和計算能力.

  鞏固練習(xí):P196練習(xí)2、3題.

  探究活動

  鋼管捆扎問題

  已知由若干根鋼管的外直徑均為d,想用一根金屬帶緊密地捆在一起,求金屬帶的長度.

  請根據(jù)下列特殊情況,找出規(guī)律,并加以證明.

  提示:設(shè)鋼管的根數(shù)為n,金屬帶的長度為Ln如圖:

  當(dāng)n=2時,L2=(π+2)d.

  當(dāng)n=3時,L3=(π+3)d.

  當(dāng)n=4時,L4=(π+4)d.

  當(dāng)n=5時,L5=(π+5)d.

  當(dāng)n=6時,L6=(π+6)d.

  當(dāng)n=7時,L7=(π+6)d.

  當(dāng)n=8時,L8=(π+7)d.

  猜測:若最外層有n根鋼管,兩兩相鄰接排列成一個向外凸的圈,相鄰兩圓是切,則金屬帶的長度為L=(π+n)d.

  證明略.

14919 枣强县| 平昌县| 元谋县| 津南区| 九寨沟县| 桓台县| 新乐市| 镇坪县| 日土县| 陕西省| 大冶市| 锡林郭勒盟| 将乐县| 金沙县| 陵川县| 鹤山市| 岳普湖县| 新丰县| 满洲里市| 成安县| 大余县| 宾阳县| 乌鲁木齐市| 阳新县| 明溪县| 北票市| 湟源县| 江达县| 和平县| 额尔古纳市| 久治县| 云安县| 阿拉善右旗| 逊克县| 泗洪县| 辽源市| 吕梁市| 大理市| 大兴区| 仁化县| 长海县|