丰满少妇女人a毛片视频-酒色成人网-日韩欧美一-日韩精品一区二区av在线观看-成人久久免费-欧美精品一二三四区-国产午夜免费-亚洲男人第一天堂-一区二区三区福利视频-午夜激情影院-av中文天堂在线-免费一区二区-欧美日韩xxx-91区视频-亚洲另类激情专区小说图片-黄色的网站在线观看-香蕉精品在线

高分網(wǎng) > 通用學(xué)習(xí)方法 > 課堂學(xué)習(xí) >

八年級(jí)下冊(cè)數(shù)學(xué)教案人教版范文3篇

時(shí)間: 如英2 課堂學(xué)習(xí)

  數(shù)學(xué)教學(xué)有效性直接關(guān)系著學(xué)生學(xué)習(xí)效果以及學(xué)校教學(xué)質(zhì)量,以下是學(xué)習(xí)啦小編要與大家分享的:八年級(jí)下冊(cè)數(shù)學(xué)教案人教版范文,供大家參考!

  八年級(jí)下冊(cè)數(shù)學(xué)教案人教版范文一

  一、素質(zhì)教育目標(biāo)

  (一)知識(shí)教學(xué)點(diǎn):1.使學(xué)生了解一元二次方程及整式方程的意義;2.掌握一元二次方程的一般形式,正確識(shí)別二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).

  (二)能力訓(xùn)練點(diǎn):1.通過(guò)一元二次方程的引入,培養(yǎng)學(xué)生分析問題和解決問題的能力;2.通過(guò)一元二次方程概念的學(xué)習(xí),培養(yǎng)學(xué)生對(duì)概念理解的完整性和深刻性.

  (三)德育滲透點(diǎn):由知識(shí)來(lái)源于實(shí)際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)列方程向?qū)W生滲透方程的思想方法,由此培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí).

  二、教學(xué)重點(diǎn)、難點(diǎn)

  1.教學(xué)重點(diǎn):一元二次方程的意義及一般形式.

  2.教學(xué)難點(diǎn) :正確識(shí)別一般式中的“項(xiàng)”及“系數(shù)”.

  三、教學(xué)步驟

  (一)明確目標(biāo)

  1.用電腦演示下面的操作:一塊長(zhǎng)方形的薄鋼片,在薄鋼片的四個(gè)角上截去四個(gè)相同的小正方形,然后把四邊折起來(lái),就成為一個(gè)無(wú)蓋的長(zhǎng)方體盒子,演示完畢,讓學(xué)生拿出事先準(zhǔn)備好的長(zhǎng)方形紙片和剪刀,實(shí)際操作一下剛才演示的過(guò)程.學(xué)生的實(shí)際操作,為解決下面的問題奠定基礎(chǔ),同時(shí)培養(yǎng)學(xué)生手、腦、眼并用的能力.

  2.現(xiàn)有一塊長(zhǎng)80cm,寬60cm的薄鋼片,在每個(gè)角上截去四個(gè)相同的小正方形,然后做成底面積為1500cm2的無(wú)蓋的長(zhǎng)方體盒子,那么應(yīng)該怎樣求出截去的小正方形的邊長(zhǎng)?

  教師啟發(fā)學(xué)生設(shè)未知數(shù)、列方程,經(jīng)整理得到方程x2-70x+825=0,此方程不會(huì)解,說(shuō)明所學(xué)知識(shí)不夠用,需要學(xué)習(xí)新的知識(shí),學(xué)了本章的知識(shí),就可以解這個(gè)方程,從而解決上述問題.

  板書:“第十二章一元二次方程”.教師恰當(dāng)?shù)恼Z(yǔ)言,激發(fā)學(xué)生的求知欲和學(xué)習(xí)興趣.

  (二)整體感知

  通過(guò)章前引例和節(jié)前引例,使學(xué)生真正認(rèn)識(shí)到知識(shí)來(lái)源于實(shí)際,并且又為實(shí)際服務(wù),學(xué)習(xí)了一元二次方程的知識(shí),可以解決許多實(shí)際問題,真正體會(huì)學(xué)習(xí)數(shù)學(xué)的意義;產(chǎn)生用數(shù)學(xué)的意識(shí),調(diào)動(dòng)學(xué)生積極主動(dòng)參與數(shù)學(xué)活動(dòng)中.同時(shí)讓學(xué)生感到一元二次方程的解法在本章中處于非常重要的地位.

  (三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)及目標(biāo)完成過(guò)程

  1.復(fù)習(xí)提問

  (1)什么叫做方程?曾學(xué)過(guò)哪些方程?

  (2)什么叫做一元一次方程?“元”和“次”的含義?

  (3)什么叫做分式方程?

  問題的提出及解決,為深刻理解一元二次方程的概念做好鋪墊.

  2.引例:剪一塊面積為150cm2的長(zhǎng)方形鐵片使它的長(zhǎng)比寬多5cm,這塊鐵片應(yīng)怎樣剪?

  引導(dǎo),啟發(fā)學(xué)生設(shè)未知數(shù)列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以觀察、比較,得到整式方程和一元二次方程的概念.

  整式方程:方程的兩邊都是關(guān)于未知數(shù)的整式,這樣的方程稱為整式方程.

  一元二次方程:只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是2,這樣的整式方程叫做一元二次方程.

  一元二次方程的概念是在整式方程的前提下定義的.一元二次方程中的“一元”指的是“只含有一個(gè)未知數(shù)”,“二次”指的是“未知數(shù)的最高次數(shù)是2”.“元”和“次”的概念搞清楚則給定義一元三次方程等打下基礎(chǔ).一元二次方程的定義是指方程進(jìn)行合并同類項(xiàng)整理后而言的.這實(shí)際上是給出要判定方程是一元二次方程的步驟:首先要進(jìn)行合并同類項(xiàng)整理,再按定義進(jìn)行判斷.

  3.練習(xí):指出下列方程,哪些是一元二次方程?

  (1)x(5x-2)=x(x+1)+4x2;

  (2)7x2+6=2x(3x+1);

  (3)

  (4)6x2=x;

  (5)2x2=5y;

  (6)-x2=0

  4.任何一個(gè)一元二次方程都可以化為一個(gè)固定的形式,這個(gè)形式就是一元二次方程的一般形式.

  一元二次方程的一般形式:ax2+bx+c=0(a≠0).ax2稱二次項(xiàng),bx稱一次項(xiàng),c稱常數(shù)項(xiàng),a稱二次項(xiàng)系數(shù),b稱一次項(xiàng)系數(shù).

  一般式中的“a≠0”為什么?如果a=0,則ax2+bx+c=0就不是一元二次方程,由此加深對(duì)一元二次方程的概念的理解.

  5.例1 把方程3x(x-1)=2(x+1)+8化成一般形式,并寫出二次項(xiàng)系數(shù),一次項(xiàng)系數(shù)及常數(shù)項(xiàng)?

  教師邊提問邊引導(dǎo),板書并規(guī)范步驟,深刻理解一元二次方程及一元二次方程的一般形式.

  6.練習(xí)1:教材P.5中1,2.要求多數(shù)學(xué)生在練習(xí)本上筆答,部分學(xué)生板書,師生評(píng)價(jià).題目答案不唯一,最好二次項(xiàng)系數(shù)化為正數(shù).

  練習(xí)2:下列關(guān)于x的方程是否是一元二次方程?為什么?若是一元二次方程,請(qǐng)分別指出其二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng).

  8mx-2m-1=0;(4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.

  教師提問及恰當(dāng)?shù)囊龑?dǎo),對(duì)學(xué)生回答給出評(píng)價(jià),通過(guò)此組練習(xí),加強(qiáng)對(duì)概念的理解和深化.

  (四)總結(jié)、擴(kuò)展

  引導(dǎo)學(xué)生從下面三方面進(jìn)行小結(jié).從方法上學(xué)到了什么方法?從知識(shí)內(nèi)容上學(xué)到了什么內(nèi)容?分清楚概念的區(qū)別和聯(lián)系?

  1.將實(shí)際問題用設(shè)未知數(shù)列方程轉(zhuǎn)化為數(shù)學(xué)問題,體會(huì)知識(shí)來(lái)源于實(shí)際以及轉(zhuǎn)化為方程的思想方法.

  2.整式方程概念、一元二次方程的概念以及它的一般形式,二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).歸納所學(xué)過(guò)的整式方程.

  3.一元二次方程的意義與一般形式ax2+bx+c=0(a≠0)的區(qū)別和聯(lián)系.強(qiáng)調(diào)“a≠0”這個(gè)條件有長(zhǎng)遠(yuǎn)的重要意義.

  四、布置作業(yè)

  1.教材P.6 練習(xí)2.

  2.思考題:

  1)能不能說(shuō)“關(guān)于x的整式方程中,含有x2項(xiàng)的方程叫做一元二次方程?”

  2)試說(shuō)出一元三次方程,一元四次方程的定義及一般形式(學(xué)有余力的學(xué)生思考).

  八年級(jí)下冊(cè)數(shù)學(xué)教案人教版范文二

  一、素質(zhì)教育目標(biāo)

  (一)知識(shí)教學(xué)點(diǎn)

  1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理.

  2.了解四邊形的不穩(wěn)定性及它在實(shí)際生產(chǎn),生活中的應(yīng)用.

  (二)能力訓(xùn)練點(diǎn)

  1.通過(guò)引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力.

  2.通過(guò)推導(dǎo)四邊形內(nèi)角和定理,對(duì)學(xué)生滲透化歸思想.

  3.會(huì)根據(jù)比較簡(jiǎn)單的條件畫出指定的四邊形.

  4.講解四邊形外角概念和外角定理時(shí),聯(lián)系三角形的有關(guān)概念對(duì)學(xué)生滲透類比思想.

  (三)德育滲透點(diǎn)

  使學(xué)生認(rèn)識(shí)到這些四邊形都是常見的,研究他們都有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)新知識(shí)的興趣.

  (四)美育滲透點(diǎn)

  通過(guò)四邊形內(nèi)角和定理數(shù)學(xué),滲透統(tǒng)一美,應(yīng)用美.

  二、學(xué)法引導(dǎo)

  類比、觀察、引導(dǎo)、講解

  三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法

  1.教學(xué)重點(diǎn):四邊形及其有關(guān)概念;熟練推導(dǎo)四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計(jì)算問題.

  2.教學(xué)難點(diǎn) :理解四邊形的有關(guān)概念中的一些細(xì)節(jié)問題;四邊形不穩(wěn)定性的理解和應(yīng)用.

  3.疑點(diǎn)及解決辦法:四邊形的定義中為什么要有“在平面內(nèi)”,而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個(gè)角.

  四、課時(shí)安排

  2課時(shí)

  五、教具學(xué)具準(zhǔn)備

  投影儀、膠片、四邊形模型、常用畫圖工具

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  教師引入新課,學(xué)生觀察圖形,類比三角形知識(shí)導(dǎo)出四邊形有關(guān)概念;師生共同推導(dǎo)四邊形內(nèi)角和的定理,學(xué)生鞏固內(nèi)角和定理和應(yīng)用;共同分析探索外角和定理,學(xué)生閱讀相關(guān)材料.

  第一課時(shí)

  七、教學(xué)步驟

  【復(fù)習(xí)引入】

  在小學(xué)里已經(jīng)對(duì)四邊形、長(zhǎng)方形、平形四邊形的有關(guān)知識(shí)有所了解,但還很膚淺,這一章我們將比較系統(tǒng)地學(xué)習(xí)各種四邊形的性質(zhì)和判定分析它們之間的關(guān)系,并運(yùn)用有關(guān)四邊形的知識(shí)解決一些新問題.

  【引入新課】

  用投影儀打出課前畫好的教材中P119的圖.

  師問:在上圖中你能把知道的長(zhǎng)方形、正方形、平行四邊形、梯形找出來(lái)嗎?(啟發(fā)學(xué)生找上述圖形,最后教師用彩色筆勾出幾個(gè)圖形).

  【講解新課】

  1.四邊形的有關(guān)概念

  結(jié)合圖形講解四邊形,四邊形的邊、頂點(diǎn)、角,凸四邊形,四邊形的對(duì)角線(同時(shí)學(xué)生在書上畫出上述概念),講解這些概念時(shí):

  (1)要結(jié)合圖形.

  (2)要與三角形類比.

  (3)講清定義中的關(guān)鍵詞語(yǔ).如四邊形定義中要說(shuō)明為什么加上“同一平面內(nèi)”而三角形的定義中為什么不加“同一平面內(nèi)”(三角形的三個(gè)頂點(diǎn)一定在同一平面內(nèi),而四個(gè)點(diǎn)有可能不在同一平面內(nèi),如圖4—2中的點(diǎn) .我們現(xiàn)在只研究平面圖形,故在定義中加上“在同一平面內(nèi)”的限制).

  (4)強(qiáng)調(diào)四邊形對(duì)角線的作用,作為四邊形的一種常用的輔助線,通過(guò)它可以把四邊形問題轉(zhuǎn)化為三角形來(lái)解(滲透化歸思想),并觀察圖4-3用對(duì)角線分成的這些三角形與原四邊形的關(guān)系.

  (5)強(qiáng)調(diào)四邊形的表示方法,一定要按頂點(diǎn)順序書寫四邊形如圖4—1.

  (6)在判斷一個(gè)四邊形是不是凸四邊形時(shí),一定要按照定義的要求把每一邊都延長(zhǎng)后再下結(jié)論如圖4-4,圖4-5.

  2.四邊形內(nèi)角和定理

  教師問:

  (1)在圖4-3中對(duì)角線AC把四邊形ABCD分成幾個(gè)三角形?

  (2)在圖4-6中兩條對(duì)角線AC和BD把四邊形分成幾個(gè)三角形?

  (3)若在四邊形ABCD 如圖4-7內(nèi)任取一點(diǎn)O,從O向四個(gè)頂點(diǎn)作連線,把四邊形分成幾個(gè)三角形.

  我們知道,三角形內(nèi)角和等于180°,那么四邊形的內(nèi)角和就等于:

 ?、?×180°=360°如圖4—6;

 ?、?×180°-360°=360°如圖4-7.

  例1 已知:如圖4—8,直線 于B、 于C.

  求證:(1) ; (2) .

  本例題是四邊形內(nèi)角和定理的應(yīng)用,實(shí)際上它證明了兩邊相互垂直的兩個(gè)角相等或互補(bǔ)的關(guān)系,何時(shí)用相等,何時(shí)用互補(bǔ),如果需要應(yīng)用,作兩三步推理就可以證出.

  【總結(jié)、擴(kuò)展】

  1.四邊形的有關(guān)概念.

  2.四邊形對(duì)角線的作用.

  3.四邊形內(nèi)角和定理.

  八、布置作業(yè)

  教材P128中1(1)、2、 3.

  九、板書設(shè)計(jì)

  八年級(jí)下冊(cè)數(shù)學(xué)教案人教版范文三

  教學(xué)目標(biāo)

  (一)教學(xué)知識(shí)點(diǎn)

  1.了解兩個(gè)條件確定一個(gè)一次函數(shù);一個(gè)條件確定一個(gè)正比例函數(shù).

  2.能由兩個(gè)條件求出一次函數(shù)的表達(dá)式,一個(gè)條件求出正比例函數(shù)的表達(dá)式,并解決有關(guān)現(xiàn)實(shí)問題.

  (二)能力訓(xùn)練要求

  能根據(jù)函數(shù)的圖象確定一次函數(shù)的表達(dá)式,培養(yǎng)學(xué)生的數(shù)形結(jié)合能力.

  (三)情感與價(jià)值觀要求

  能把實(shí)際問題抽象為數(shù)字問題,也能把所學(xué)知識(shí)運(yùn)用于實(shí)際,讓學(xué)生認(rèn)識(shí)數(shù)字與人類生活的密切聯(lián)系及對(duì)人類歷史發(fā)展的作用.

  教學(xué)重點(diǎn)

  根據(jù)所給信息確定一次函數(shù)的表達(dá)式.

  教學(xué)難點(diǎn)

  用一次函數(shù)的知識(shí)解決有關(guān)現(xiàn)實(shí)問題.

  教學(xué)方法

  啟發(fā)引導(dǎo)法.

  教具準(zhǔn)備

  小黑板、三角板

  教學(xué)過(guò)程

 ?、?導(dǎo)入 新課

  [師]在上節(jié)課中我們學(xué)習(xí)了一次函數(shù)圖象的定義,在給定表達(dá)式的前提下,我們可以說(shuō)出它的有關(guān)性質(zhì).如果給你有關(guān)信息,你能否求出函數(shù)的表達(dá)式呢?這將是本節(jié)課我們要研究的問題.

 ?、?講授新課

  一、試一試(閱讀課文P167頁(yè))想想下面的問題。

  某物體沿一個(gè)斜坡下滑,它的速度v(米/秒)與其下滑時(shí)間t(秒 )的關(guān)系。

  (1)寫出v與t之間的關(guān)系式;

  (2)下滑3秒時(shí)物體的速度是多少?

  分析:要求v與t之間的關(guān)系式,首先應(yīng)觀察圖象,確定它是正比例函數(shù)的圖象,還是一次函數(shù)的圖象,然后設(shè)函數(shù)解析式,再把已知的坐標(biāo)代入解析

  式求出待定系數(shù)即可.

  [師]請(qǐng)大家先思考解題的思路,然后和同伴進(jìn)行交流.

  [生]因?yàn)楹瘮?shù)圖象過(guò)原點(diǎn),且是一條直線,所以這是一個(gè)正比例函數(shù)的圖象,設(shè)表達(dá)式為v=kt,由圖象可知(2,5)在直線上,所以把t=2,v=5代入上式求出k,就可知v與t的關(guān)系式了.

  解:由題意可知v是t的正比例函數(shù).

  設(shè)v=kt

  ∵(2,5)在函數(shù)圖象上

  ∴2k=5

  ∴k=

  ∴v與t的關(guān)系式為

  v= t

  (2)求下滑3秒時(shí)物體的速度,就是求當(dāng)t等于3時(shí)的v的值.

  解:當(dāng)t=3時(shí)

  v= ×3= =7.5(米/秒)

  二、想一想

  [師]請(qǐng)大家從這個(gè)題的解題經(jīng)歷中,總結(jié)一下如果已知函數(shù)的圖象,怎樣求函數(shù)的表達(dá)式.大家互相討論之后再表述出來(lái).

  [生]第一步應(yīng)根據(jù)函數(shù)的圖象,確定這個(gè)函數(shù)是正比例函數(shù)或是一次函數(shù);

  第二步設(shè)函數(shù)的表達(dá)式;

  第三步根據(jù)表達(dá)式列等式,若是正比例函數(shù),則找一個(gè)點(diǎn)的坐標(biāo)即可;若是一次函數(shù),則需要找兩個(gè)點(diǎn)的坐標(biāo),把這些點(diǎn)的坐標(biāo)分別代入所設(shè)的解析式中,組成關(guān)于k,b的一個(gè)或兩個(gè)方程.

  第四步解出k,b值.

  第五步把k,b的值代回到表達(dá)式中即可.

  [師]由此可知,確定正比例函數(shù)的表達(dá)式需要幾個(gè)條件?確定一次函數(shù)的表達(dá)式呢?

  [生]確定正比例函數(shù)的表達(dá)式需要一個(gè)條件,確定一次函數(shù)的表達(dá)式需要兩個(gè)條件.

  三、閱讀課文P167頁(yè)例一,嘗試分析解答下面例題。

  [例]在彈性限度內(nèi),彈簧的長(zhǎng)度y(厘米)是所掛物體的質(zhì)量x(千克)的

  一次函數(shù)、當(dāng)所掛物體的質(zhì)量為1千克時(shí),彈簧長(zhǎng)15厘米;當(dāng)所掛物體的質(zhì)量為3千克時(shí),彈簧長(zhǎng)16厘米.寫出y與x之間的關(guān)系式,并求出所掛物體的質(zhì)量為4千克時(shí)彈簧的長(zhǎng)度.

  [師]請(qǐng)大家先分析一下,這個(gè)例題和我們上面討論的問題有何區(qū)別.

  [生]沒有畫圖象.

  [師]在沒有圖象的情況下,怎樣確定是正比例函數(shù)還是一次函數(shù)呢?

  [生]因?yàn)轭}中已告訴是一次函數(shù).

  [師]對(duì).這位同學(xué)非常仔細(xì),大家應(yīng)該向這位同學(xué)學(xué)習(xí),對(duì)所給題目首先要認(rèn)真審題,然后再有目標(biāo)地去解決,下面請(qǐng)大家仿照上面的解題步驟來(lái)完成本題.

  [生]解:設(shè)y=kx+b,根據(jù)題意,得

  15=k+b, ①

  16=3k+b. ②

  由①得b=15-k

  由②得b=16-3k

  ∴15-k=16-3k

  即k=0.5

  把k=0.5代入①,得k=14.5

  所以在彈性限度內(nèi).

  y=0.5x+14.5

  當(dāng)x=4時(shí)

  y=0.5×4+14.5=16.5(厘米)

  即物體的質(zhì)量為4千克時(shí),彈簧長(zhǎng)度為16.5厘米.

  [師]大家思考一下,在上面的兩個(gè)題中,有哪些步驟是相同的,你能否總結(jié)出求函數(shù)表達(dá)式的步驟.

  [生]它們的相同步驟是第二步到第四步.

  求函數(shù)表達(dá)式的步驟有:

  1.設(shè)函數(shù)表達(dá)式.

  2.根據(jù)已知條件列出有關(guān)方程.

  3.解方程.

  4.把求出的k,b值代回到表達(dá)式中即可.

  四.課堂練習(xí)

  (一)隨堂練習(xí)P168頁(yè)

  (題目見教材)

  解:若一次函數(shù)y=2x+b的圖象經(jīng)過(guò)點(diǎn)A(-1,1),則b=3,該圖象經(jīng)過(guò)點(diǎn)B(1,-5)和點(diǎn) C (- ,0)

  (題目見教材)

  解:分析直線l是一次函數(shù)y=kx+b的圖象.由圖象過(guò)(0,2),(3,0)兩點(diǎn)可知:當(dāng)x=0時(shí),y=2;當(dāng)x=3時(shí),y=0。分別代入y=kx+b中列出兩個(gè)方程,解法如上面例題。

  五.課時(shí)小結(jié)

  本節(jié)課我們主要學(xué)習(xí)了根據(jù)已知條件,如何求函數(shù)的表達(dá)式.

  其步驟如下:

  1.設(shè)函數(shù)表達(dá)式;

  2.根據(jù)已知條件列出有關(guān)k,b的方程;

  3.解方程,求k,b;

  4.把k,b代回表達(dá)式中,寫出表達(dá)式.

  六、布置作業(yè)

27848 海原县| 绥宁县| 东乡族自治县| 鄂尔多斯市| 桃园县| 河南省| 沙田区| 东乡| 沙洋县| 谷城县| 昌黎县| 芷江| 额尔古纳市| 钦州市| 黄平县| 乌拉特后旗| 潍坊市| 额尔古纳市| 永康市| 莱芜市| 广东省| 潢川县| 广德县| 通海县| 和平区| 贵溪市| 洛南县| 比如县| 司法| 贵州省| 文昌市| 台东市| 辽阳县| 抚远县| 如皋市| 科尔| 浦县| 偃师市| 诸城市| 瑞金市| 通榆县|