丰满少妇女人a毛片视频-酒色成人网-日韩欧美一-日韩精品一区二区av在线观看-成人久久免费-欧美精品一二三四区-国产午夜免费-亚洲男人第一天堂-一区二区三区福利视频-午夜激情影院-av中文天堂在线-免费一区二区-欧美日韩xxx-91区视频-亚洲另类激情专区小说图片-黄色的网站在线观看-香蕉精品在线

高分網(wǎng) > 高考 > 高考輔導 >

2016高考文科數(shù)學知識點

時間: 文樺2 高考輔導

  高中數(shù)學一直以來都是讓很多學子頭疼的一科,尤其是有些文科生,不論自己怎么努力,最終收效甚微,從而對數(shù)學喪失信心失去興趣,導致學生討厭數(shù)學討厭數(shù)學課進而討厭數(shù)學老師,影響了學生的發(fā)展和老師的正常教學活動。尤其是在文理分科之后又無形中加大了文科數(shù)學學科的教與學的難度。 以下是學習啦小編為大家精心準備的:2016高考文科數(shù)學知識點總結(jié)。歡迎參考閱讀!

  2016高考文科數(shù)學知識點如下:

 1. 對于集合,一定要抓住集合的代表元素,及元素的“確定性、互異性、無序性”。

  中元素各表示什么?

  注重借助于數(shù)軸和文氏圖解集合問題。

  空集是一切集合的子集,是一切非空集合的真子集。

  3. 注意下列性質(zhì):

  (3)德摩根定律:

  4. 你會用補集思想解決問題嗎?(排除法、間接法)

  的取值范圍。

  6. 命題的四種形式及其相互關(guān)系是什么?

  (互為逆否關(guān)系的命題是等價命題。)

  原命題與逆否命題同真、同假;逆命題與否命題同真同假。

  7. 對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應元素的唯一性,哪幾種對應能構(gòu)成映射?

  (一對一,多對一,允許B中有元素無原象。)

  8. 函數(shù)的三要素是什么?如何比較兩個函數(shù)是否相同?

  (定義域、對應法則、值域)

  9. 求函數(shù)的定義域有哪些常見類型?

  10. 如何求復合函數(shù)的定義域?

  義域是_____________。

  11. 求一個函數(shù)的解析式或一個函數(shù)的反函數(shù)時,注明函數(shù)的定義域了嗎?

  12. 反函數(shù)存在的條件是什么?

  (一一對應函數(shù))

  求反函數(shù)的步驟掌握了嗎?

  (①反解x;②互換x、y;③注明定義域)

  13. 反函數(shù)的性質(zhì)有哪些?

  ①互為反函數(shù)的圖象關(guān)于直線y=x對稱;

 ?、诒4媪嗽瓉砗瘮?shù)的單調(diào)性、奇函數(shù)性;

  14. 如何用定義證明函數(shù)的單調(diào)性?

  (取值、作差、判正負)

  如何判斷復合函數(shù)的單調(diào)性?

  ∴……)

  15. 如何利用導數(shù)判斷函數(shù)的單調(diào)性?

  值是( )

  A. 0 B. 1 C. 2 D. 3

  ∴a的最大值為3)

  16. 函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?

  (f(x)定義域關(guān)于原點對稱)

  注意如下結(jié)論:

  (1)在公共定義域內(nèi):兩個奇函數(shù)的乘積是偶函數(shù);兩個偶函數(shù)的乘積是偶函數(shù);一個偶函數(shù)與奇函數(shù)的乘積是奇函數(shù)。

  17. 你熟悉周期函數(shù)的定義嗎?

  函數(shù),T是一個周期。)

  如:

  18. 你掌握常用的圖象變換了嗎?

  注意如下“翻折”變換:

  19. 你熟練掌握常用函數(shù)的圖象和性質(zhì)了嗎?

  的雙曲線。

  應用:①“三個二次”(二次函數(shù)、二次方程、二次不等式)的關(guān)系——二次方程

 ?、谇箝]區(qū)間[m,n]上的最值。

 ?、矍髤^(qū)間定(動),對稱軸動(定)的最值問題。

 ?、芤辉畏匠谈姆植紗栴}。

  由圖象記性質(zhì)! (注意底數(shù)的限定!)

  利用它的單調(diào)性求最值與利用均值不等式求最值的區(qū)別是什么?

  20. 你在基本運算上常出現(xiàn)錯誤嗎?

  21. 如何解抽象函數(shù)問題?

  (賦值法、結(jié)構(gòu)變換法)

  22. 掌握求函數(shù)值域的常用方法了嗎?

  (二次函數(shù)法(配方法),反函數(shù)法,換元法,均值定理法,判別式法,利用函數(shù)單調(diào)性法,導數(shù)法等。)

  如求下列函數(shù)的最值:

  23. 你記得弧度的定義嗎?能寫出圓心角為α,半徑為R的弧長公式和扇形面積公式嗎?

  24. 熟記三角函數(shù)的定義,單位圓中三角函數(shù)線的定義

  25. 你能迅速畫出正弦、余弦、正切函數(shù)的圖象嗎?并由圖象寫出單調(diào)區(qū)間、對稱點、對稱軸嗎?

  (x,y)作圖象。

  27. 在三角函數(shù)中求一個角時要注意兩個方面——先求出某一個三角函數(shù)值,再判定角的范圍。

  28. 在解含有正、余弦函數(shù)的問題時,你注意(到)運用函數(shù)的有界性了嗎?

  29. 熟練掌握三角函數(shù)圖象變換了嗎?

  (平移變換、伸縮變換)

  平移公式:

  圖象?

  30. 熟練掌握同角三角函數(shù)關(guān)系和誘導公式了嗎?

  “奇”、“偶”指k取奇、偶數(shù)。

  A. 正值或負值 B. 負值 C. 非負值 D. 正值

  31. 熟練掌握兩角和、差、倍、降冪公式及其逆向應用了嗎?

  理解公式之間的聯(lián)系:

  應用以上公式對三角函數(shù)式化簡。(化簡要求:項數(shù)最少、函數(shù)種類最少,分母中不含三角函數(shù),能求值,盡可能求值。)

  具體方法:

  (2)名的變換:化弦或化切

  (3)次數(shù)的變換:升、降冪公式

  (4)形的變換:統(tǒng)一函數(shù)形式,注意運用代數(shù)運算。

  32. 正、余弦定理的各種表達形式你還記得嗎?如何實現(xiàn)邊、角轉(zhuǎn)化,而解斜三角形?

  (應用:已知兩邊一夾角求第三邊;已知三邊求角。)

  33. 用反三角函數(shù)表示角時要注意角的范圍。

  34. 不等式的性質(zhì)有哪些?

  答案:C

  35. 利用均值不等式:

  值?(一正、二定、三相等)

  注意如下結(jié)論:

  36. 不等式證明的基本方法都掌握了嗎?

  (比較法、分析法、綜合法、數(shù)學歸納法等)

  并注意簡單放縮法的應用。

  (移項通分,分子分母因式分解,x的系數(shù)變?yōu)?,穿軸法解得結(jié)果。)

  38. 用“穿軸法”解高次不等式——“奇穿,偶切”,從最大根的右上方開始

  39. 解含有參數(shù)的不等式要注意對字母參數(shù)的討論

  40. 對含有兩個絕對值的不等式如何去解?

  (找零點,分段討論,去掉絕對值符號,最后取各段的并集。)

  證明:

  (按不等號方向放縮)

  42. 不等式恒成立問題,常用的處理方式是什么?(可轉(zhuǎn)化為最值問題,或“△”問題)

  43. 等差數(shù)列的定義與性質(zhì)

  0的二次函數(shù))

  項,即:

  44. 等比數(shù)列的定義與性質(zhì)

  46. 你熟悉求數(shù)列通項公式的常用方法嗎?

  例如:(1)求差(商)法

  解:

  [練習]

  (2)疊乘法

  解:

  (3)等差型遞推公式

  [練習]

  (4)等比型遞推公式

  [練習]

  (5)倒數(shù)法

  47. 你熟悉求數(shù)列前n項和的常用方法嗎?

  例如:(1)裂項法:把數(shù)列各項拆成兩項或多項之和,使之出現(xiàn)成對互為相反數(shù)的項。

  解:

  [練習]

  (2)錯位相減法:

  (3)倒序相加法:把數(shù)列的各項順序倒寫,再與原來順序的數(shù)列相加。

  [練習]

  48. 你知道儲蓄、貸款問題嗎?

  △零存整取儲蓄(單利)本利和計算模型:

  若每期存入本金p元,每期利率為r,n期后,本利和為:

  △若按復利,如貸款問題——按揭貸款的每期還款計算模型(按揭貸款——分期等額歸還本息的借款種類)

  若貸款(向銀行借款)p元,采用分期等額還款方式,從借款日算起,一期(如一年)后為第一次還款日,如此下去,第n次還清。如果每期利率為r(按復利),那么每期應還x元,滿足

  p——貸款數(shù),r——利率,n——還款期數(shù)

  49. 解排列、組合問題的依據(jù)是:分類相加,分步相乘,有序排列,無序組合。

  (2)排列:從n個不同元素中,任取m(m≤n)個元素,按照一定的順序排成一

  (3)組合:從n個不同元素中任取m(m≤n)個元素并組成一組,叫做從n個不

  50. 解排列與組合問題的規(guī)律是:

  相鄰問題捆綁法;相間隔問題插空法;定位問題優(yōu)先法;多元問題分類法;至多至少問題間接法;相同元素分組可采用隔板法,數(shù)量不大時可以逐一排出結(jié)果。

  如:學號為1,2,3,4的四名學生的考試成績

  則這四位同學考試成績的所有可能情況是( )

  A. 24 B. 15 C. 12 D. 10

  解析:可分成兩類:

  (2)中間兩個分數(shù)相等

  相同兩數(shù)分別取90,91,92,對應的排列可以數(shù)出來,分別有3,4,3種,∴有10種。

  ∴共有5+10=15(種)情況

  51. 二項式定理

  性質(zhì):

  (3)最值:n為偶數(shù)時,n+1為奇數(shù),中間一項的二項式系數(shù)最大且為第

  表示)

  52. 你對隨機事件之間的關(guān)系熟悉嗎?

  的和(并)。

  (5)互斥事件(互不相容事件):“A與B不能同時發(fā)生”叫做A、B互斥。

  (6)對立事件(互逆事件):

  (7)獨立事件:A發(fā)生與否對B發(fā)生的概率沒有影響,這樣的兩個事件叫做相互獨立事件。

  53. 對某一事件概率的求法:

  分清所求的是:(1)等可能事件的概率(常采用排列組合的方法,即

  (5)如果在一次試驗中A發(fā)生的概率是p,那么在n次獨立重復試驗中A恰好發(fā)生

  如:設(shè)10件產(chǎn)品中有4件次品,6件正品,求下列事件的概率。

  (1)從中任取2件都是次品;

  (2)從中任取5件恰有2件次品;

  (3)從中有放回地任取3件至少有2件次品;

  解析:有放回地抽取3次(每次抽1件),∴n=103

  而至少有2件次品為“恰有2次品”和“三件都是次品”

  (4)從中依次取5件恰有2件次品。

  解析:∵一件一件抽取(有順序)

  分清(1)、(2)是組合問題,(3)是可重復排列問題,(4)是無重復排列問題。

  54. 抽樣方法主要有:簡單隨機抽樣(抽簽法、隨機數(shù)表法)常常用于總體個數(shù)較少時,它的特征是從總體中逐個抽取;系統(tǒng)抽樣,常用于總體個數(shù)較多時,它的主要特征是均衡成若干部分,每部分只取一個;分層抽樣,主要特征是分層按比例抽樣,主要用于總體中有明顯差異,它們的共同特征是每個個體被抽到的概率相等,體現(xiàn)了抽樣的客觀性和平等性。

  55. 對總體分布的估計——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計總體的期望和方差。

  要熟悉樣本頻率直方圖的作法:

  (2)決定組距和組數(shù);

  (3)決定分點;

  (4)列頻率分布表;

  (5)畫頻率直方圖。

  如:從10名女生與5名男生中選6名學生參加比賽,如果按性別分層隨機抽樣,則組成此參賽隊的概率為____________。

  56. 你對向量的有關(guān)概念清楚嗎?

  (1)向量——既有大小又有方向的量。

  在此規(guī)定下向量可以在平面(或空間)平行移動而不改變。

  (6)并線向量(平行向量)——方向相同或相反的向量。

  規(guī)定零向量與任意向量平行。

  (7)向量的加、減法如圖:

  (8)平面向量基本定理(向量的分解定理)

  的一組基底。

  (9)向量的坐標表示

  表示。

  57. 平面向量的數(shù)量積

  數(shù)量積的幾何意義:

  (2)數(shù)量積的運算法則

  [練習]

  答案:

  答案:2

  答案:

  58. 線段的定比分點

  ※. 你能分清三角形的重心、垂心、外心、內(nèi)心及其性質(zhì)嗎?

  59. 立體幾何中平行、垂直關(guān)系證明的思路清楚嗎?

  平行垂直的證明主要利用線面關(guān)系的轉(zhuǎn)化:

  線面平行的判定:

  線面平行的性質(zhì):

  三垂線定理(及逆定理):

  線面垂直:

  面面垂直:

  60. 三類角的定義及求法

  (1)異面直線所成的角θ,0°<θ≤90°

  (2)直線與平面所成的角θ,0°≤θ≤90°

  (三垂線定理法:A∈α作或證AB⊥β于B,作BO⊥棱于O,連AO,則AO⊥棱l,∴∠AOB為所求。)

  三類角的求法:

 ?、僬页龌蜃鞒鲇嘘P(guān)的角。

 ?、谧C明其符合定義,并指出所求作的角。

 ?、塾嬎愦笮?解直角三角形,或用余弦定理)。

  [練習]

  (1)如圖,OA為α的斜線OB為其在α內(nèi)射影,OC為α內(nèi)過O點任一直線。

  (2)如圖,正四棱柱ABCD—A1B1C1D1中對角線BD1=8,BD1與側(cè)面B1BCC1所成的為30°。

 ?、偾驜D1和底面ABCD所成的角;

  ②求異面直線BD1和AD所成的角;

 ?、矍蠖娼荂1—BD1—B1的大小。

  (3)如圖ABCD為菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB與面PCD所成的銳二面角的大小。

  (∵AB∥DC,P為面PAB與面PCD的公共點,作PF∥AB,則PF為面PCD與面PAB的交線……)

  61. 空間有幾種距離?如何求距離?

  點與點,點與線,點與面,線與線,線與面,面與面間距離。

  將空間距離轉(zhuǎn)化為兩點的距離,構(gòu)造三角形,解三角形求線段的長(如:三垂線定理法,或者用等積轉(zhuǎn)化法)。

  如:正方形ABCD—A1B1C1D1中,棱長為a,則:

  (1)點C到面AB1C1的距離為___________;

  (2)點B到面ACB1的距離為____________;

  (3)直線A1D1到面AB1C1的距離為____________;

  (4)面AB1C與面A1DC1的距離為____________;

  (5)點B到直線A1C1的距離為_____________。

  62. 你是否準確理解正棱柱、正棱錐的定義并掌握它們的性質(zhì)?

  正棱柱——底面為正多邊形的直棱柱

  正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。

  正棱錐的計算集中在四個直角三角形中:

  它們各包含哪些元素?

  63. 球有哪些性質(zhì)?

  (2)球面上兩點的距離是經(jīng)過這兩點的大圓的劣弧長。為此,要找球心角!

  (3)如圖,θ為緯度角,它是線面成角;α為經(jīng)度角,它是面面成角。

  (5)球內(nèi)接長方體的對角線是球的直徑。正四面體的外接球半徑R與內(nèi)切球半徑r之比為R:r=3:1。

  積為( )

  答案:A

  64. 熟記下列公式了嗎?

  (2)直線方程:

  65. 如何判斷兩直線平行、垂直?

  66. 怎樣判斷直線l與圓C的位置關(guān)系?

  圓心到直線的距離與圓的半徑比較。

  直線與圓相交時,注意利用圓的“垂徑定理”。

  67. 怎樣判斷直線與圓錐曲線的位置?

  68. 分清圓錐曲線的定義

  70. 在圓錐曲線與直線聯(lián)立求解時,消元后得到的方程,要注意其二次項系數(shù)是否為零?△≥0的限制。(求交點,弦長,中點,斜率,對稱存在性問題都在△≥0下進行。)

  71. 會用定義求圓錐曲線的焦半徑嗎?

  如:

  通徑是拋物線的所有焦點弦中最短者;以焦點弦為直徑的圓與準線相切。

  72. 有關(guān)中點弦問題可考慮用“代點法”。

  答案:

  73. 如何求解“對稱”問題?

  (1)證明曲線C:F(x,y)=0關(guān)于點M(a,b)成中心對稱,設(shè)A(x,y)為曲線C上任意一點,設(shè)A'(x',y')為A關(guān)于點M的對稱點。

  75. 求軌跡方程的常用方法有哪些?注意討論范圍。

  (直接法、定義法、轉(zhuǎn)移法、參數(shù)法)

  76. 對線性規(guī)劃問題:作出可行域,作出以目標函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標函數(shù)的最值。

33442 磴口县| 田东县| 龙南县| 香港| 财经| 淳化县| 永仁县| 洪洞县| 沽源县| 汨罗市| 盐池县| 诸城市| 太保市| 吉水县| 闽清县| 壶关县| 铜梁县| 河南省| 康定县| 太康县| 浦北县| 霍州市| 神农架林区| 辉县市| 株洲县| 山丹县| 南华县| 新化县| 当阳市| 都昌县| 建昌县| 永平县| 武功县| 普兰县| 廉江市| 仙桃市| 日照市| 寿宁县| 梅河口市| 友谊县| 南平市|