完全平方公式教學(xué)設(shè)計(jì)
《完全平方公式》教學(xué)設(shè)計(jì)
計(jì)算:
(1)(x+1)2; (2)(x-1)2;
(3)(a+b)2; (4)(a-b)2.
由上述計(jì)算,你發(fā)現(xiàn)了什么結(jié)論?
二、合作探究
探究點(diǎn):完全平方公式
【類型一】 直接運(yùn)用完全平方公式進(jìn)行計(jì)算
利用完全平方公式計(jì)算:
(1)(5-a)2;
(2)(-3m-4n)2;
(3)(-3a+b)2.
解析:直接運(yùn)用完全平方公式進(jìn)行計(jì)算即可.
解:(1)(5-a)2=25-10a+a2;
(2)(-3m-4n)2=9m2+24mn+16n2;
(3)(-3a+b)2=9a2-6ab+b2.
方法總結(jié):完全平方公式:(a±b)2=a2±2ab+b2.可巧記為“首平方,末平方,首末兩倍中間放”.
【類型二】 構(gòu)造完全平方式
如果36x2+(m+1)xy+25y2是一個(gè)完全平方式,求m的值.
解析:先根據(jù)兩平方項(xiàng)確定出這兩個(gè)數(shù),再根據(jù)完全平方公式確定m的值.
解:∵36x2+(m+1)xy+25y2=(6x)2+(m+1)xy+(5y)2,∴(m+1)xy=±2?6x?5y,∴m+1=±60,∴m=59或-61.
方法總結(jié):兩數(shù)的平方和加上或減去它們積的2倍,就構(gòu)成了一個(gè)完全平方式.注意積的2倍的符號,避免漏解.
【類型三】 運(yùn)用完全平方公式進(jìn)行簡便計(jì)算
利用完全平方公式計(jì)算:
(1)992; (2)1022.
解析:(1)把99寫成(100-1)的形式,然后利用完全平方公式展開計(jì)算.(2)可把102分成100+2,然后根據(jù)完全平方公式計(jì)算.
解:(1)992=(100-1)2=1002-2×100+12=10000-200+1=9801;
(2)1022=(100+2)2=1002+2×100×2+4=10404.
方法總結(jié):利用完全平方公式計(jì)算一個(gè)數(shù)的平方時(shí),先把這個(gè)數(shù)寫成整十或整百的數(shù)與另一個(gè)數(shù)的和或差,然后根據(jù)完全平方公式展開計(jì)算.
【類型四】 靈活運(yùn)用完全平方公式求代數(shù)式的值
若(x+y)2=9,且(x-y)2=1.
(1)求1x2+1y2的值;
(2)求(x2+1)(y2+1)的值.
解析:(1)先去括號,再整體代入即可求出答案;(2)先變形,再整體代入,即可求出答案.
解:(1)∵(x+y)2=9,(x-y)2=1,∴x2+2xy+y2=9,x2-2xy+y2=1,4xy=9-1=8,∴xy=2,∴1x2+1y2=x2+y2x2y2=(x+y)2-2xyx2y2=9-2×222=54;
(2)∵(x+y)2=9,xy=2,∴(x2+1)(y2+1)=x2y2+y2+x2+1=x2y2+(x+y)2-2xy+1=22+9-2×2+1=10.
方法總結(jié):所求的展開式中都含有xy或x+y時(shí),我們可以把它們看作一個(gè)整體代入到需要求值的代數(shù)式中,整體求解.
【類型五】 完全平方公式的幾何背景
我們已經(jīng)接觸了很多代數(shù)恒等式,知道可以用一些硬紙片拼成的圖形面積來解釋一些代數(shù)恒等式.例如圖甲可以用來解釋(a+b)2-(a-b)2=4ab.那么通過圖乙面積的計(jì)算,驗(yàn)證了一個(gè)恒等式,此等式是( )
A.a2-b2=(a+b)(a-b)
B.(a-b)(a+2b)=a2+ab-2b2
C.(a-b)2=a2-2ab+b2
D.(a+b)2=a2+2ab+b2
解析:空白部分的面積為(a-b)2,還可以表示為a2-2ab+b2,所以,此等式是(a-b)2=a2-2ab+b2.故選C.
方法總結(jié):通過幾何圖形面積之間的數(shù)量關(guān)系對完全平方公式做出幾何解釋.
【類型六】 與完全平方公式有關(guān)的探究問題
下表為楊輝三角系數(shù)表,它的作用是指導(dǎo)讀者按規(guī)律寫出形如(a+b)n(n為正整數(shù))展開式的系數(shù),請你仔細(xì)觀察下表中的規(guī)律,填出(a+b)6展開式中所缺的系數(shù).
(a+b)1=a+b,
(a+b)2=a2+2ab+b2,
(a+b)3=a3+3a2b+3ab2+b3,
則(a+b)6=a6+6a5b+15a4b2+________a3b3+15a2b4+6ab5+b6.
解析:由(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各項(xiàng)展開式的系數(shù)除首尾兩項(xiàng)都是1外,其余各項(xiàng)系數(shù)都等于(a+b)n-1的相鄰兩個(gè)系數(shù)的和,由此可得(a+b)4的各項(xiàng)系數(shù)依次為1、4、6、4、1;(a+b)5的各項(xiàng)系數(shù)依次為1、5、10、10、5、1;因此(a+b)6的系數(shù)分別為1、6、15、20、15、6、1,故填20.
方法總結(jié):對于規(guī)律探究題,讀懂題意并根據(jù)所給的式子尋找規(guī)律,是快速解題的關(guān)鍵.
三、板書設(shè)計(jì)
1.完全平方公式
兩個(gè)數(shù)的和(或差)的平方,等于這兩個(gè)數(shù)的平方和加(或減)這兩個(gè)數(shù)乘積的2倍.
(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.
2.完全平方公式的運(yùn)用
本節(jié)課通過多項(xiàng)式乘法推導(dǎo)出完全平方公式,讓學(xué)生自己總結(jié)出完全平方公式的特征,注意不要出現(xiàn)如下錯誤:(a+b)2=a2+b2,(a-b)2=a2-b2.為幫助學(xué)生記憶完全平方公式,可采用如下口訣:首平方,尾平方,乘積兩倍在中央.教學(xué)中,教師可通過判斷正誤等習(xí)題強(qiáng)化學(xué)生對完全平方公式的理解記憶。
《完全平方公式》知識點(diǎn)總結(jié)
1.完全平方公式:
完全平方有三項(xiàng),首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;
首尾括號帶平方,尾項(xiàng)符號隨中央。
2.因式分解:
一提(公因式)二套(公式)三分組,細(xì)看幾項(xiàng)不離譜,
兩項(xiàng)只用平方差,三項(xiàng)十字相乘法,陣法熟練不馬虎,
四項(xiàng)仔細(xì)看清楚,若有三個(gè)平方數(shù)(項(xiàng)),
就用一三來分組,否則二二去分組,
五項(xiàng)、六項(xiàng)更多項(xiàng),二三、三三試分組,
以上若都行不通,拆項(xiàng)、添項(xiàng)看清楚。
3.單項(xiàng)式運(yùn)算:
加、減、乘、除、乘(開)方,三級運(yùn)算分得清,
系數(shù)進(jìn)行同級(運(yùn))算,指數(shù)運(yùn)算降級(進(jìn))行。
4.一元一次不等式解題的一般步驟:
去分母、去括號,移項(xiàng)時(shí)候要變號,同類項(xiàng)合并好,再把系數(shù)來除掉,
兩邊除(以)負(fù)數(shù)時(shí),不等號改向別忘了。
5.一元一次不等式組的解集:
大大取較大,小小取較小,小大、大小取中間,大小、小大無處找。
一元二次不等式、一元一次絕對值不等式的解集:
大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。
看了“完全平方公式教學(xué)設(shè)計(jì)”
