上海市2023年高考數(shù)學(xué)試卷真題(含答案)
高考數(shù)學(xué)答題技巧方法
1、高考數(shù)學(xué)答題帶著量角器進(jìn)考場
帶個量角器進(jìn)考場,遇見解析幾何馬上可以知道是多少度,小題求角基本馬上解了,要是求別的也可以代換,大題角度是個很重要的結(jié)論,如果你實在不會,也可以寫出最后結(jié)論。
2、高考數(shù)學(xué)答題立體幾何
立體幾何中,求二面角B-OA-C的新方法。利用三面角余弦定理。設(shè)二面角B-OA-C是∠OA,∠AOB是α,∠BOC是β,∠AOC是γ,這個定理就是:cos∠OA=(cosβ-cosαcosγ)/sinαsinγ。知道這個定理,如果考試中遇到立體幾何求二面角的題,套一下公式就出來了。
3、高考數(shù)學(xué)答題取特殊值法
圓錐曲線中最后題往往聯(lián)立起來很復(fù)雜導(dǎo)致算不出,這時你可以取特殊值法強行算出過程就是先聯(lián)立,后算代爾塔,用下韋達(dá)定理,列出題目要求解的表達(dá)式,就ok了。
4、高考數(shù)學(xué)答題空間幾何
空間幾何證明過程中有一步實在想不出把沒用過的條件直接寫上然后得出想不出的那個結(jié)論即可。如果第一題真心不會做直接寫結(jié)論成立則第二題可以直接用!用常規(guī)法的同學(xué)建議先隨便建立個空間坐標(biāo)系,做錯了還有2分可以得!
5、高考數(shù)學(xué)答題圖像法
超越函數(shù)的導(dǎo)數(shù)選擇題,可以用滿足條件常函數(shù)代替,不行用一次函數(shù)。如果條件過多,用圖像法秒殺。不等式也是特值法圖像法。
高考數(shù)學(xué)萬能解題法
熟悉基本的解題步驟和解題方法
解題的過程,是一個思維的過程。對一些基本的、常見的問題,前人已經(jīng)總結(jié)出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習(xí)題的答案。
審題要認(rèn)真仔細(xì)
對于一道具體的習(xí)題,解題時最重要的環(huán)節(jié)是審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應(yīng)特別注意每一句話的內(nèi)在涵義,并從中找出隱含條件。
有些學(xué)生沒有養(yǎng)成讀題、思考的習(xí)慣,心里著急,匆匆一看,就開始解題,結(jié)果常常是漏掉了一些信息,花了很長時間解不出來,還找不到原因,想快卻慢了。所以,在實際解題時,應(yīng)特別注意,審題要認(rèn)真、仔細(xì)。
常見函數(shù)值域或最值的經(jīng)典求法
函數(shù)值域是函數(shù)概念中三要素之一,是高考中必考內(nèi)容,具有較強的綜合性,貫穿整個高中數(shù)學(xué)的始終.而在高考試卷中的形式可謂千變?nèi)f化,但萬變不離其宗,真正實現(xiàn)了常考常新的考試要求。所以,我們應(yīng)該掌握一些簡單函數(shù)的值域求解的基本方法。
學(xué)會畫圖
畫圖是一個翻譯的過程,把解題時的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來,其中的關(guān)系就變得一目了然。尤其是對于幾何題,包括解析幾何題,若不會畫圖,有時簡直是無從下手。
因此,牢記各種題型的基本作圖方法,牢記各種函數(shù)的圖像和意義及演變過程和條件,對于提高解題速度非常重要。
離心率的求值或取值范圍問題
圓錐曲線的離心率是近年高考的一個熱點,有關(guān)離心率的試題究其原因,一是貫徹高考命題“以能力立意”的指導(dǎo)思想,離心率問題綜合性較強,靈活多變,能較好反映考生對知識的熟練掌握和靈活運用的能力,能有效地反映考生對數(shù)學(xué)思想和方法的掌握程度;二是圓錐曲線是高中數(shù)學(xué)的重要內(nèi)容,具有數(shù)學(xué)的實用性和美學(xué)價值,也是以后進(jìn)一步學(xué)習(xí)的基礎(chǔ)。
極端性原則
將所要研究的問題向極端狀態(tài)進(jìn)行分析,使因果關(guān)系變得更加明顯,從而達(dá)到迅速解決問題的目的。極端性多數(shù)應(yīng)用在求極值、取值范圍、解析幾何上面,很多計算步驟繁瑣、計算量大的題,一但采用極端性去分析,那么就能瞬間解決問題。
數(shù)列求和方法
數(shù)列是高中數(shù)學(xué)的重要內(nèi)容,又是高中數(shù)學(xué)與高等數(shù)學(xué)的重要銜接點,其涉及的基礎(chǔ)知識、數(shù)學(xué)思想與方法,在高等數(shù)學(xué)的學(xué)習(xí)中起著重要作用,因而成為歷年高考久考不衰的熱點題型,在歷年的高考中都占有重要地位。數(shù)列求和的常用方法是我們在高中數(shù)學(xué)學(xué)習(xí)中必須掌握的基本方法,是高考的必考熱點之一。此類問題中除了利用等差數(shù)列和等比數(shù)列求和公式外,大部分?jǐn)?shù)列的求和都需要一定的技巧。
