丰满少妇女人a毛片视频-酒色成人网-日韩欧美一-日韩精品一区二区av在线观看-成人久久免费-欧美精品一二三四区-国产午夜免费-亚洲男人第一天堂-一区二区三区福利视频-午夜激情影院-av中文天堂在线-免费一区二区-欧美日韩xxx-91区视频-亚洲另类激情专区小说图片-黄色的网站在线观看-香蕉精品在线

高分網(wǎng) > 高考 > 高考輔導(dǎo) >

初三二次函數(shù)知識點

時間: 如英2 高考輔導(dǎo)

  二次函數(shù)知識點在初中數(shù)學(xué)中是十分重要的一個章節(jié)。今天學(xué)習啦小編就與大家分享:初三二次函數(shù)知識點,希望對大家的學(xué)習有幫助!

  初三二次函數(shù)知識點一

  I.定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

  (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)則稱y為x的二次函數(shù)。

  二次函數(shù)表達式的右邊通常為二次三項式。

  II.二次函數(shù)的三種表達式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

  頂點式:y=a(x-h)^2+k [拋物線的頂點P(h,k)]

  交點式:y=a(x-x₁)(x-x ₂) [僅限于與x軸有交點A(x₁ ,0)和 B(x₂,0)的拋物線]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

  h=-b/2a k=(4ac-b^2)/4a x₁,x₂=(-b±√b^2-4ac)/2a

  III.二次函數(shù)的圖像

  在平面直角坐標系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

  IV.拋物線的性質(zhì)

  1.拋物線是軸對稱圖形。對稱軸為直線 x = -b/2a。

  對稱軸與拋物線唯一的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

  2.拋物線有一個頂點P,坐標為:P ( -b/2a ,(4ac-b^2)/4a )當-b/2a=0時,P在y軸上;當Δ= b^2-4ac=0時,P在x軸上。

  3.二次項系數(shù)a決定拋物線的開口方向和大小。

  當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。

  4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

  當a與b同號時(即ab>0),對稱軸在y軸左;

  當a與b異號時(即ab<0),對稱軸在y軸右。

  5.常數(shù)項c決定拋物線與y軸交點。

  拋物線與y軸交于(0,c)

  6.拋物線與x軸交點個數(shù)

  Δ= b^2-4ac>0時,拋物線與x軸有2個交點。

  Δ= b^2-4ac=0時,拋物線與x軸有1個交點。

  Δ= b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x= -b±√b^2-4ac 的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

  V.二次函數(shù)與一元二次方程

  特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,

  當y=0時,二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax^2+bx+c=0

  此時,函數(shù)圖像與x軸有無交點即方程有無實數(shù)根。函數(shù)與x軸交點的橫坐標即為方程的根。

  1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同。

  當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

  當h<0時,則向左平行移動|h|個單位得到.

  當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2 +k的圖象;

  當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  因此,研究拋物線 y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

  2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).

  3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x ≤ -b/2a時,y隨x的增大而減小;當x ≥ -b/2a時,y隨x的增大而增大.若a<0,當x ≤ -b/2a時,y隨x的增大而增大;當x ≥ -b/2a時,y隨x的增大而減小.

  4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

  (1)圖象與y軸一定相交,交點坐標為(0,c);

  (2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

  (a≠0)的兩根.這兩點間的距離AB=|x₂-x₁|

  當△=0.圖象與x軸只有一個交點;

  當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0.

  5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x= -b/2a時,y最小(大)值=(4ac-b^2)/4a.

  頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.

  6.用待定系數(shù)法求二次函數(shù)的解析式

  (1)當題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應(yīng)值時,可設(shè)解析式為一般形式:

  y=ax^2+bx+c(a≠0).

  (2)當題給條件為已知圖象的頂點坐標或?qū)ΨQ軸時,可設(shè)解析式為頂點式:y=a(x-h)^2+k(a≠0).

  (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設(shè)解析式為兩根式:y=a(x-x₁)(x-x₂)(a≠0).

  7.二次函數(shù)知識很容易與其它知識綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn).

  初三二次函數(shù)知識點二

  首先我們要學(xué)習二次函數(shù),就應(yīng)該先了解什么叫做二次函數(shù),一般來說,下圖所表示的形式一般就是二次函數(shù):

  在這里我們需要注意的就是a是不等于0的,而b、c可以等于0。通過觀察二次函數(shù)我們可以發(fā)現(xiàn),二次函數(shù)的等號的左邊是函數(shù),而右邊是關(guān)于自變量X的二次等式,X的最高次數(shù)是2。而abc都是一個常數(shù),其中,我們把a稱之為二次項系數(shù),其不為零。而b是一次項系數(shù),c是常數(shù)項。

  二次函數(shù)最為基本的形似,就是當b、c都等于0的時候,這個時候我們可以看一下二次函數(shù)基本形式的一些相關(guān)性質(zhì),如下圖所示

  無論是基本形式的二次函數(shù),還是其他形式的二次函數(shù),有一些知識點都是共同的,在我們學(xué)習二次函數(shù)的時候都會用到的。一個就是a的符號,因為a的符號確定了圖像的開口方向是向上的還是向下的。

  這里需要給同學(xué)們一個建議,無論是學(xué)習二次函數(shù)還是其他什么別的函數(shù),學(xué)習函數(shù)最基本的就是畫圖像。很多時候解題的時候,我們都可以通過所畫出的函數(shù)圖像來解答題目,這種方法的好處就是簡單快捷,所以我們在學(xué)習函數(shù)的時候一定也要學(xué)習如何畫出函數(shù)的圖像。

  一般來說二次函數(shù)基本形式的頂點坐標都是在原點,也就是(0,0)處,而完整形式的二次函數(shù)我們就可以通過常數(shù)項c來判斷。除了頂點坐標,開口方向之外,二次函數(shù)圖像還有一個很重要的地方就是對稱軸,因為二次函數(shù)是一個對稱圖像,所以對稱軸的存在就十分重要。因此,當我們學(xué)習二次函數(shù)的時候一定要注意這三個方面的學(xué)習,就是開口方向、頂點坐標以及對稱軸。

27216 荥经县| 梅河口市| 毕节市| 资阳市| 和平县| 阳泉市| 习水县| 辽宁省| 长沙县| 南京市| 兖州市| 桦川县| 昌都县| 扶余县| 论坛| 桦甸市| 湖南省| 根河市| 仁化县| 句容市| 石首市| 班戈县| 紫云| 灌南县| 离岛区| 平阳县| 许昌市| 江陵县| 越西县| 临高县| 杂多县| 阿尔山市| 黄石市| 乐业县| 稻城县| 尼玛县| 南岸区| 广宁县| 肥城市| 徐汇区| 杭锦后旗|