高中數(shù)學的得分技巧
技巧一、首先是一些小聰明
3.三角函數(shù)第二題,如求a(cosB+cosC)/(b+c)coA之類的先邊化角然后把第一題算的比如角A等于60度直接假設B和C都等于60°帶入求解。省時省力!
4.空間幾何證明過程中有一步實在想不出把沒用過的條件直接寫上然后得出想不出的那個結論即可。如果第一題真心不會做直接寫結論成立則第二題可以直接用!用常規(guī)法的同學建議先隨便建立個空間坐標系,做錯了還有2分可以得!
5.立體幾何中第二問叫你求余弦值啥的一般都用坐標法!如果求角度則常規(guī)法簡單!
6.選擇題中考線面關系的可以先從D項看起前面都是來浪費你時間的
7.選擇題中求取值范圍的直接觀察答案從每個選項中取與其他選項不同的特殊點帶入能成立的就是答案
8.線性規(guī)劃題目直接求交點帶入比較大小即可
9.遇到這樣的選項A.1/2,B.1,C.3/2,D.5/2這樣的話答案一般是D因為B可以看作是2/2前面三個都是出題者湊出來的如果答案在前面3個的話D應該是2(4/2)
怎么樣,是不是感覺媽媽再也不擔心你的數(shù)學了。
技巧二、大題上多拿分
以上只是一些小技巧,數(shù)學想在不會的情況下再多拿一些分,還需要在大題上多拿分。
1、大題文科第一題一般是三角函數(shù)題,第一步一般都是需要將三角函數(shù)化簡成標準形式Asin(wx+fai)+c,接下來按題做就行了,注意二倍角的降冪作用以及輔助角(合一)公式,周期公式,對稱軸、對稱中心、單調(diào)區(qū)間、最大值、最小值都是用整體法求解。求最值時通過自變量的范圍推到里面整體u=wx+fai的范圍,然后可以直接畫sinu的圖像,避免畫平移的圖像。這部分題還有一種就是解三角形的問題,運用正弦定理、余弦定理、面積公式,通常有兩個方向,即角化成邊和邊化成角,得根據(jù)具體問題具體分析哪個方便一些,遇到復雜的題就把未知量列成未知數(shù),根據(jù)定理列方程組,然后解方程組即可。
2、理科如果考數(shù)列題的話,注意等差、等比數(shù)列通項公式、前n項和公式;證明數(shù)列是等差或等比直接用定義法(后項減前項為常數(shù)/后項比前項為常數(shù)),求數(shù)列通項公式,如為等差或等比直接代公式即可,其它的一般注意類型采用不同的方法(已知Sn求an、已知Sn與an關系求an(前兩種都是利用an=Sn-Sn-1,注意討論n=1、n>1),累加法、累乘法、構造法(所求數(shù)列本身不是等差或等比,需要將所求數(shù)列適當變形構造成新數(shù)列l(wèi)amt,通過構造一個新數(shù)列使其為等差或等比,便可求其通項,再間接求出所求數(shù)列通項)。
數(shù)列的求和第一步要注意通項公式的形式,然后選擇合適的方法(直接法、分組求和法、裂項相消法、錯位相減法、倒序相加法等)進行求解。如有其它問題,注意放縮法證明,還有就是數(shù)列可以看成一個以n為自變量的函數(shù)。
3、第二題是立體幾何題,證明題注意各種證明類型的方法(判定定理、性質(zhì)定理),注意引輔助線,一般都是對角線、中點、成比例的點、等腰等邊三角形中點等等,理科其實證明不出來直接用向量法也是可以的。計算題主要是體積,注意將字母換位(等體積法)。
線面距離用等體積法。理科還有求二面角、線面角等,用建立空間坐標系的方法(向量法)比較簡單,注意各個點的坐標的計算,不要算錯。
4、第三題是概率與統(tǒng)計題,主要有頻率分布直方圖,注意縱坐標(頻率/組距)。求概率的問題,文科列舉,然后數(shù)數(shù),別數(shù)錯、數(shù)少了啊,概率=滿足條件的個數(shù)/所有可能的個數(shù);
理科用排列組合算數(shù)。獨立性檢驗根據(jù)公式算K方值,別算錯數(shù)了,會查表,用1減查完的概率。回歸分析,根據(jù)數(shù)據(jù)代入公式(公式中各項的意義)即可求出直線方程,注意(x平均,y平均)點滿足直線方程。理科還有隨機變量分布列問題,注意列表時把可能取到的所有值都列出,別少了,然后分別算概率,最后檢查所有概率和是否是1,不是1說明要不你概率算錯了,要不隨機變量數(shù)少了。
5、第四題是函數(shù)題,第一步別忘了先看下定義域,一般都得求導,求單調(diào)區(qū)間時注意與定義域取交??纯搭}型,將題型轉(zhuǎn)化一下,轉(zhuǎn)化到你學過的內(nèi)容(利用導數(shù)判斷單調(diào)性(含參數(shù)時要利用分類討論思想,一般求導完通分完分子是二次函數(shù)的比較多,討論開口a=0、a<0、a>0和后兩種情況下delt<=0、delt>0)。
求極值(根據(jù)單調(diào)區(qū)間列表或畫圖像簡圖)、求最值(所有的極值點與兩端點值比較)等),典型的有恒成立問題、存在問題(注意與恒成立問題的區(qū)別),不管是什么都要求函數(shù)的最大值或最小值,注意方法以及比較定義域端點值,注意函數(shù)圖象(數(shù)形結合思想:求方程的根或解、曲線的交點個數(shù))的運用。
證明有關的問題可以利用證明的各種方法(綜合法、分析法、反證法、理科的數(shù)學歸納法)。多問的時候注意后面的問題一般需要用到前面小問的結論。抽象的證明問題別光用眼睛在那看,得設出里面的未知量,通過設而不求思想證明問題。
6、第五題是圓錐曲線題,第一問求曲線方程,注意方法(定義法、待定系數(shù)法、直接求軌跡法、反求法、參數(shù)方程法等等)。一定檢查下第一問算的數(shù)對不,要不如果算錯了第二問做出來了也白算了。
第二問有直線與圓錐曲線相交時,記住“聯(lián)立完事用聯(lián)立”,第一步聯(lián)立,根據(jù)韋達定理得出兩根之和、兩根之差、因一般都是交于兩點,注意驗證判別式>0,設直線時注意討論斜率是否存在。
第二步也是最關鍵的就是用聯(lián)立,關鍵是怎么用聯(lián)立,即如何將題里的條件轉(zhuǎn)化成你剛才聯(lián)立完的x1+x2和x1x2,然后將結果代入即可,通常涉及的題型有
弦長問題(代入弦長公式)
定比分點問題(根據(jù)比例關系建立三點坐標之間的一個關系式(橫坐標或縱坐標),再根據(jù)根與系數(shù)的關系建立圓錐曲線上的兩點坐標的兩個關系式,從這三個關系式入手解決);
點對稱問題(利用兩點關于直線對稱的兩個條件,即這兩點的連線與對稱軸垂直和這兩點的中點在對稱軸上);
定點問題(直線y=kx+b過定點即找出k與b的關系,如b=5k+7,然后將b代入到直線方程y=kx+5k+7=k(x+5)+7即可找出定點(-5,7));
定值問題(基本思想是函數(shù)思想,將要證明或要求解的量表示為某個合適變量(斜率、截距或坐標)的函數(shù),通過適當化簡,消去變量即得定值。);
最值或范圍問題(基本思想還是函數(shù)思想,將要求解的量表示為某個合適變量(斜率、截距或坐標)的函數(shù),利用函數(shù)求值域的方法(首先要求變量的范圍即定義域—別忘了delt>0,然后運用求值域的各種方法—直接法、換元法、圖像法、導數(shù)法、均值不等式法(注意驗證“=”)等)求出最值(最大、最小),即范圍也求出來了)。
抽象的證明問題別光用眼睛在那看,得設出里面的未知量,通過設而不求思想證明問題。
高考數(shù)學怎么復習最有效
數(shù)學幾類題目做題方法
像三角函數(shù)大題,如果題干是關于三角形邊、角之間的關系,那該題就是考查正弦定理或余弦定理的;如果是三角與函數(shù)相結合,那一定會考查函數(shù)的化簡、單調(diào)性、最值、函數(shù)圖像的周期等。像概率題,理科考試一定會考分布列、期望甚至方差,這需要牢記一些公式,要求期望先求分布列;像圓錐曲線題型,過焦點的直線與圓錐曲線聯(lián)立經(jīng)???,這種題有幾個快捷公式大家可以記住,但是作為大題且不可直接利用,還是要利用根與系數(shù)的關系說明。
另外,做圓錐曲線題,準確畫圖是必須的,凡是不畫圖形的多半不會做對!像選做題,幾何證明問題極有可能考查圓的切線、割線之間的幾個定理或者考查四點共圓(在圓內(nèi)來回轉(zhuǎn));而坐標系與參數(shù)方程,考查的就是標準方程、參數(shù)方程、極坐標方程之間的轉(zhuǎn)化(切記兩點間距離公式不能在極坐標中應用);不等式選講考的就是帶有絕對值的函數(shù)的不等式求解問題,這種題過來過去都是去絕對值。
找到哪些類型題目不會
也許平時考試你考不好,但是平時考試考的是某幾章的特定知識的考試或某幾個學校的聯(lián)考試題,這畢竟不是高考試題。你將來是要上考場的,你要做的是高考試題!所以你不妨拿一套去年某個省的高考試題做做,卡住時間來做!之后對對答案,看能得多少分,重點關注做錯或不會做的題,看看答案,想想為啥不會做?為啥做錯了?(最后壓軸大題就免了,這種題看看答案理解就行,不太可能全做對的!)
數(shù)學考高分沒你想的那么難
數(shù)學得高分其實并不難,選擇題考的知識比較零碎,如果在知識塊上有漏洞,那么有些選擇題可能你不會做。但是選擇題又比較好做,因為正確答案就在四個選項中間,你可能不會做題,但是你只要把答案選出來就行了,這是有技巧的。另外,最后兩道選擇題通常稍難一些,如果常規(guī)方法難以求解,不妨試試特殊值法、排除法等,就算蒙也要蒙對的概率大一些。選擇題、填空題每道題5分,要想得高分,做錯的題不能超過三道。對于大題,一定要注意規(guī)范答題,該寫的一定要寫上,步驟規(guī)范、正確才能拿滿分。
數(shù)學公式必須牢記
數(shù)學有好多公式都是需要牢記的,就像語文的名言名句。有些同學認為自己所有學科都不行,想要放棄,其實與其這樣在課堂上混日子,還不如先拿某一科目開刀,拿一張去年的高考試卷,從頭開始,看看哪道題不會就做,就專門做一些針對這類題型的習題。你只要能做上十套,把十套真題上除了壓軸大題外的其他題都弄懂了,也會自己做了,你水平就很不錯了!每一科你都這樣來試試,這時候也許你不用跟著老師進度了,反正跟著老師進度安排你還是在最低線上掙扎,還不如找班主任談談,就說自己想嘗試一個月自己安排復習計劃,看看有沒有起色,要是還是老樣子就再說唄!反正你都是班上倒數(shù)20名以下,還能差到哪去?
看了高中數(shù)學的得分技巧還看:
1.高中數(shù)學12種高分解題方法
2.高考數(shù)學得分技巧
3.高中數(shù)學九大解題技巧
4.直擊高考數(shù)學:數(shù)學高分的六大技巧
5.高中數(shù)學常用解題方法
