丰满少妇女人a毛片视频-酒色成人网-日韩欧美一-日韩精品一区二区av在线观看-成人久久免费-欧美精品一二三四区-国产午夜免费-亚洲男人第一天堂-一区二区三区福利视频-午夜激情影院-av中文天堂在线-免费一区二区-欧美日韩xxx-91区视频-亚洲另类激情专区小说图片-黄色的网站在线观看-香蕉精品在线

高分網(wǎng) > 答案大全 > 奧數(shù)題及答案 >

小學(xué)生奧數(shù)知識點(diǎn)匯編

時間: 文樺2 奧數(shù)題及答案

  奧數(shù)對青少年的腦力鍛煉有著一定的作用,可以通過奧數(shù)對思維和邏輯進(jìn)行鍛煉,對學(xué)生起到的并不僅僅是數(shù)學(xué)方面的作用,通常比普通數(shù)學(xué)要深奧些。

  近代的數(shù)學(xué)競賽,仍然是解題的競賽,但主要在學(xué)生(尤其是高中生)之間進(jìn)行。目的是為了發(fā)現(xiàn)與培育人才。

  把中學(xué)生的數(shù)學(xué)競賽命名為“數(shù)學(xué)奧林匹克”的是前蘇聯(lián),采用這一名稱的原因是數(shù)學(xué)競賽與體育競賽有著許多相似之處,兩者都崇尚奧林匹克精神。競賽的成果使人們意外地發(fā)現(xiàn),數(shù)學(xué)競賽的強(qiáng)國往往也是體育競賽的強(qiáng)國,這給了人們一定的啟示。

  今天學(xué)習(xí)啦小編就將與大家分享:小學(xué)生奧數(shù)知識點(diǎn)匯編;具體內(nèi)容如下,希望能夠幫助到大家!

  1.和差倍問題

  和差問題和倍問題差倍問題

  已知條件幾個數(shù)的和與差幾個數(shù)的和與倍數(shù)幾個數(shù)的差與倍數(shù)

  公式適用范圍已知兩個數(shù)的和,差,倍數(shù)關(guān)系

  公式①(和-差)÷2=較小數(shù)

  較小數(shù)+差=較大數(shù)小學(xué)奧數(shù)很簡單,就這30個知識點(diǎn)

  和-較小數(shù)=較大數(shù)

  ②(和+差)÷2=較大數(shù)

  較大數(shù)-差=較小數(shù)

  和-較大數(shù)=較小數(shù)

  和÷(倍數(shù)+1)=小數(shù)

  小數(shù)×倍數(shù)=大數(shù)

  和-小數(shù)=大數(shù)

  差÷(倍數(shù)-1)=小數(shù)

  小數(shù)×倍數(shù)=大數(shù)

  小數(shù)+差=大數(shù)

  關(guān)鍵問題求出同一條件下的

  和與差和與倍數(shù)差與倍數(shù)

  2.年齡問題的三個基本特征:

 ?、賰蓚€人的年齡差是不變的;

  ②兩個人的年齡是同時增加或者同時減少的;

 ?、蹆蓚€人的年齡的倍數(shù)是發(fā)生變化的;

  3.歸一問題的基本特點(diǎn):問題中有一個不變的量,一般是那個“單一量”,題目一般用“照這樣的速度”……等詞語來表示。

  關(guān)鍵問題:根據(jù)題目中的條件確定并求出單一量;

  4.植樹問題

  基本類型在直線或者不封閉的曲線上植樹,兩端都植樹在直線或者不封閉的曲線上植樹,兩端都不植樹在直線或者不封閉的曲線上植樹,只有一端植樹封閉曲線上植樹

  基本公式棵數(shù)=段數(shù)+1

  棵距×段數(shù)=總長棵數(shù)=段數(shù)-1

  棵距×段數(shù)=總長棵數(shù)=段數(shù)

  棵距×段數(shù)=總長

  關(guān)鍵問題確定所屬類型,從而確定棵數(shù)與段數(shù)的關(guān)系

  5.雞兔同籠問題

  基本概念:雞兔同籠問題又稱為置換問題、假設(shè)問題,就是把假設(shè)錯的那部分置換出來;

  基本思路:

 ?、偌僭O(shè),即假設(shè)某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣):

 ?、诩僭O(shè)后,發(fā)生了和題目條件不同的差,找出這個差是多少;

 ?、勖總€事物造成的差是固定的,從而找出出現(xiàn)這個差的原因;

 ?、茉俑鶕?jù)這兩個差作適當(dāng)?shù)恼{(diào)整,消去出現(xiàn)的差。

  基本公式:

 ?、侔阉须u假設(shè)成兔子:雞數(shù)=(兔腳數(shù)×總頭數(shù)-總腳數(shù))÷(兔腳數(shù)-雞腳數(shù))

 ?、诎阉型米蛹僭O(shè)成雞:兔數(shù)=(總腳數(shù)一雞腳數(shù)×總頭數(shù))÷(兔腳數(shù)一雞腳數(shù))

  關(guān)鍵問題:找出總量的差與單位量的差。

  6.盈虧問題

  基本概念:一定量的對象,按照某種標(biāo)準(zhǔn)分組,產(chǎn)生一種結(jié)果:按照另一種標(biāo)準(zhǔn)分組,又產(chǎn)生一種結(jié)果,由于分組的標(biāo)準(zhǔn)不同,造成結(jié)果的差異,由它們的關(guān)系求對象分組的組數(shù)或?qū)ο蟮目偭?

  基本思路:先將兩種分配方案進(jìn)行比較,分析由于標(biāo)準(zhǔn)的差異造成結(jié)果的變化,根據(jù)這個關(guān)系求出參加分配的總份數(shù),然后根據(jù)題意求出對象的總量.

  基本題型:

  ①一次有余數(shù),另一次不足;

  基本公式:總份數(shù)=(余數(shù)+不足數(shù))÷兩次每份數(shù)的差

  ②當(dāng)兩次都有余數(shù);

  基本公式:總份數(shù)=(較大余數(shù)一較小余數(shù))÷兩次每份數(shù)的差

 ?、郛?dāng)兩次都不足;

  基本公式:總份數(shù)=(較大不足數(shù)一較小不足數(shù))÷兩次每份數(shù)的差

  基本特點(diǎn):對象總量和總的組數(shù)是不變的。

  關(guān)鍵問題:確定對象總量和總的組數(shù)。

  7.牛吃草問題

  基本思路:假設(shè)每頭牛吃草的速度為“1”份,根據(jù)兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長速度和總草量。

  基本特點(diǎn):原草量和新草生長速度是不變的;

  關(guān)鍵問題:確定兩個不變的量。

  基本公式:

  生長量=(較長時間×長時間牛頭數(shù)-較短時間×短時間牛頭數(shù))÷(長時間-短時間);

  總草量=較長時間×長時間牛頭數(shù)-較長時間×生長量;

  8.周期循環(huán)與數(shù)表規(guī)律

  周期現(xiàn)象:事物在運(yùn)動變化的過程中,某些特征有規(guī)律循環(huán)出現(xiàn)。

  周期:我們把連續(xù)兩次出現(xiàn)所經(jīng)過的時間叫周期。

  關(guān)鍵問題:確定循環(huán)周期。

  閏年:一年有366天;

 ?、倌攴菽鼙?整除;②如果年份能被100整除,則年份必須能被400整除;

  平年:一年有365天。

  ①年份不能被4整除;②如果年份能被100整除,但不能被400整除;

  9.平均數(shù)

  基本公式:①平均數(shù)=總數(shù)量÷總份數(shù)

  總數(shù)量=平均數(shù)×總份數(shù)

  總份數(shù)=總數(shù)量÷平均數(shù)

 ?、谄骄鶖?shù)=基準(zhǔn)數(shù)+每一個數(shù)與基準(zhǔn)數(shù)差的和÷總份數(shù)

  基本算法:

  ①求出總數(shù)量以及總份數(shù),利用基本公式①進(jìn)行計算.

 ?、诨鶞?zhǔn)數(shù)法:根據(jù)給出的數(shù)之間的關(guān)系,確定一個基準(zhǔn)數(shù);一般選與所有數(shù)比較接近的數(shù)或者中間數(shù)為基準(zhǔn)數(shù);以基準(zhǔn)數(shù)為標(biāo)準(zhǔn),求所有給出數(shù)與基準(zhǔn)數(shù)的差;再求出所有差的和;再求出這些差的平均數(shù);最后求這個差的平均數(shù)和基準(zhǔn)數(shù)的和,就是所求的平均數(shù),具體關(guān)系見基本公式②。

  10.抽屜原理

  抽屜原則一:如果把(n+1)個物體放在n個抽屜里,那么必有一個抽屜中至少放有2個物體。

  例:把4個物體放在3個抽屜里,也就是把4分解成三個整數(shù)的和,那么就有以下四種情況:

 ?、?=4+0+0②4=3+1+0③4=2+2+0④4=2+1+1

  觀察上面四種放物體的方式,我們會發(fā)現(xiàn)一個共同特點(diǎn):總有那么一個抽屜里有2個或多于2個物體,也就是說必有一個抽屜中至少放有2個物體。

  抽屜原則二:如果把n個物體放在m個抽屜里,其中n>m,那么必有一個抽屜至少有:

 ?、賙=[n/m]+1個物體:當(dāng)n不能被m整除時。

 ?、趉=n/m個物體:當(dāng)n能被m整除時。

  理解知識點(diǎn):[X]表示不超過X的最大整數(shù)。

  例[4.351]=4;[0.321]=0;[2.9999]=2;

  關(guān)鍵問題:構(gòu)造物體和抽屜。也就是找到代表物體和抽屜的量,而后依據(jù)抽屜原則進(jìn)行運(yùn)算。

  11.定義新運(yùn)算

  基本概念:定義一種新的運(yùn)算符號,這個新的運(yùn)算符號包含有多種基本(混合)運(yùn)算。

  基本思路:嚴(yán)格按照新定義的運(yùn)算規(guī)則,把已知的數(shù)代入,轉(zhuǎn)化為加減乘除的運(yùn)算,然后按照基本運(yùn)算過程、規(guī)律進(jìn)行運(yùn)算。

  關(guān)鍵問題:正確理解定義的運(yùn)算符號的意義。

  注意事項(xiàng):①新的運(yùn)算不一定符合運(yùn)算規(guī)律,特別注意運(yùn)算順序。

 ?、诿總€新定義的運(yùn)算符號只能在本題中使用。

  12.數(shù)列求和

  等差數(shù)列:在一列數(shù)中,任意相鄰兩個數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。

  基本概念:首項(xiàng):等差數(shù)列的第一個數(shù),一般用a1表示;

  項(xiàng)數(shù):等差數(shù)列的所有數(shù)的個數(shù),一般用n表示;

  公差:數(shù)列中任意相鄰兩個數(shù)的差,一般用d表示;

  通項(xiàng):表示數(shù)列中每一個數(shù)的公式,一般用an表示;

  數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示.

  基本思路:等差數(shù)列中涉及五個量:a1,an,d,n,sn,,通項(xiàng)公式中涉及四個量,如果己知其中三個,就可求出第四個;求和公式中涉及四個量,如果己知其中三個,就可以求這第四個。

  基本公式:通項(xiàng)公式:an=a1+(n-1)d;

  通項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)一1)公差;

  數(shù)列和公式:sn,=(a1+an)n2;

  數(shù)列和=(首項(xiàng)+末項(xiàng))項(xiàng)數(shù)2;

  項(xiàng)數(shù)公式:n=(an+a1)d+1;

  項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))公差+1;

  公差公式:d=(an-a1))(n-1);

  公差=(末項(xiàng)-首項(xiàng))(項(xiàng)數(shù)-1);

  關(guān)鍵問題:確定已知量和未知量,確定使用的公式;

  13.二進(jìn)制及其應(yīng)用

  十進(jìn)制:用0~9十個數(shù)字表示,逢10進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2102+310+4。

  =An10n-1+An-110n-2+An-210n-3+An-310n-4+An-410n-5+An-610n-7+……+A3102+A2101+A1100

  注意:N0=1;N1=N(其中N是任意自然數(shù))

  二進(jìn)制:用0~1兩個數(shù)字表示,逢2進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義。

  (2)=An2n-1+An-12n-2+An-22n-3+An-32n-4+An-42n-5+An-62n-7

  +……+A322+A221+A120

  注意:An不是0就是1。

  十進(jìn)制化成二進(jìn)制:

 ?、俑鶕?jù)二進(jìn)制滿2進(jìn)1的特點(diǎn),用2連續(xù)去除這個數(shù),直到商為0,然后把每次所得的余數(shù)按自下而上依次寫出即可。

 ?、谙日页霾淮笥谠摂?shù)的2的n次方,再求它們的差,再找不大于這個差的2的n次方,依此方法一直找到差為0,按照二進(jìn)制展開式特點(diǎn)即可寫出。

  14.加法乘法原理和幾何計數(shù)

  加法原理:如果完成一件任務(wù)有n類方法,在第一類方法中有m1種不同方法,在第二類方法中有m2種不同方法……,在第n類方法中有mn種不同方法,那么完成這件任務(wù)共有:m1+m2.......+mn種不同的方法。

  關(guān)鍵問題:確定工作的分類方法。

  基本特征:每一種方法都可完成任務(wù)。

  乘法原理:如果完成一件任務(wù)需要分成n個步驟進(jìn)行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法……不管前面n-1步用哪種方法,第n步總有mn種方法,那么完成這件任務(wù)共有:m1×m2.......×mn種不同的方法。

  關(guān)鍵問題:確定工作的完成步驟。

  基本特征:每一步只能完成任務(wù)的一部分。

  直線:一點(diǎn)在直線或空間沿一定方向或相反方向運(yùn)動,形成的軌跡。

  直線特點(diǎn):沒有端點(diǎn),沒有長度。

  線段:直線上任意兩點(diǎn)間的距離。這兩點(diǎn)叫端點(diǎn)。

  線段特點(diǎn):有兩個端點(diǎn),有長度。

  射線:把直線的一端無限延長。

  射線特點(diǎn):只有一個端點(diǎn);沒有長度。

 ?、贁?shù)線段規(guī)律:總數(shù)=1+2+3+…+(點(diǎn)數(shù)一1);

 ?、跀?shù)角規(guī)律=1+2+3+…+(射線數(shù)一1);

  ③數(shù)長方形規(guī)律:個數(shù)=長的線段數(shù)×寬的線段數(shù):

 ?、軘?shù)長方形規(guī)律:個數(shù)=1×1+2×2+3×3+…+行數(shù)×列數(shù)

  15.質(zhì)數(shù)與合數(shù)

  質(zhì)數(shù):一個數(shù)除了1和它本身之外,沒有別的約數(shù),這個數(shù)叫做質(zhì)數(shù),也叫做素數(shù)。

  合數(shù):一個數(shù)除了1和它本身之外,還有別的約數(shù),這個數(shù)叫做合數(shù)。

  質(zhì)因數(shù):如果某個質(zhì)數(shù)是某個數(shù)的約數(shù),那么這個質(zhì)數(shù)叫做這個數(shù)的質(zhì)因數(shù)。

  分解質(zhì)因數(shù):把一個數(shù)用質(zhì)數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。通常用短除法分解質(zhì)因數(shù)。任何一個合數(shù)分解質(zhì)因數(shù)的結(jié)果是唯一的。

  分解質(zhì)因數(shù)的標(biāo)準(zhǔn)表示形式:N=,其中a1、a2、a3……an都是合數(shù)N的質(zhì)因數(shù),且a1

  求約數(shù)個數(shù)的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)

  互質(zhì)數(shù):如果兩個數(shù)的最大公約數(shù)是1,這兩個數(shù)叫做互質(zhì)數(shù)。

  16.約數(shù)與倍數(shù)

  約數(shù)和倍數(shù):若整數(shù)a能夠被b整除,a叫做b的倍數(shù),b就叫做a的約數(shù)。

  公約數(shù):幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù);其中最大的一個,叫做這幾個數(shù)的最大公約數(shù)。

  最大公約數(shù)的性質(zhì):

  1、幾個數(shù)都除以它們的最大公約數(shù),所得的幾個商是互質(zhì)數(shù)。

  2、幾個數(shù)的最大公約數(shù)都是這幾個數(shù)的約數(shù)。

  3、幾個數(shù)的公約數(shù),都是這幾個數(shù)的最大公約數(shù)的約數(shù)。

  4、幾個數(shù)都乘以一個自然數(shù)m,所得的積的最大公約數(shù)等于這幾個數(shù)的最大公約數(shù)乘以m。

  例如:12的約數(shù)有1、2、3、4、6、12;

  18的約數(shù)有:1、2、3、6、9、18;

  那么12和18的公約數(shù)有:1、2、3、6;

  那么12和18最大的公約數(shù)是:6,記作(12,18)=6;

13780 抚州市| 武冈市| 龙江县| 古田县| 清涧县| 泰顺县| 怀来县| 和田县| 北流市| 渝中区| 和平区| 枣庄市| 城步| 察雅县| 遂平县| 平塘县| 江门市| 保德县| 婺源县| 城固县| 五家渠市| 台北市| 龙游县| 博野县| 崇州市| 西贡区| 江安县| 徐汇区| 车致| 汉源县| 磐石市| 新干县| 南通市| 贺州市| 云霄县| 洛阳市| 平安县| 英吉沙县| 外汇| 安顺市| 阿勒泰市|