初中數(shù)學(xué)分式知識(shí)點(diǎn)總結(jié)
分式是貫穿初中數(shù)學(xué)的一個(gè)重要教學(xué)內(nèi)容,分式問題在中考和數(shù)學(xué)競賽中都是非常常見的題型,具有運(yùn)算綜合、技巧性大且靈活性強(qiáng)的特點(diǎn),注重考查學(xué)生的思維方式、思維技巧,同時(shí)對(duì)學(xué)生的創(chuàng)新能力也是一種考驗(yàn)。為了幫助大家更好的學(xué)習(xí),以下學(xué)習(xí)啦小編搜集整合了初中數(shù)學(xué)分式相關(guān)知識(shí)點(diǎn),歡迎參考閱讀!
初中數(shù)學(xué)分式知識(shí)點(diǎn)總結(jié)如下:
四、分式的約分
1.定義:根據(jù)分式的基本性質(zhì),把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分。
2.步驟:把分式分子分母因式分解,然后約去分子與分母的公因。
3.注意:①分式的分子與分母均為單項(xiàng)式時(shí)可直接約分,約去分子、分母系數(shù)的最大公約數(shù),然后約去分子分母相同因式的最低次冪。
?、诜肿臃帜溉魹槎囗?xiàng)式,先對(duì)分子分母進(jìn)行因式分解,再約分。
4.最簡分式的定義:一個(gè)分式的分子與分母沒有公因式時(shí),叫做最簡分式。
◆約分時(shí)。分子分母公因式的確定方法:
1)系數(shù)取分子、分母系數(shù)的最大公約數(shù)作為公因式的系數(shù).
2)取各個(gè)公因式的最低次冪作為公因式的因式.
3)如果分子、分母是多項(xiàng)式,則應(yīng)先把分子、分母分解因式,然后判斷公因式.
五、分式的通分
1.定義:把幾個(gè)異分母的分式分別化成與原來的分式相等的同分母分式,叫做分式的通分。
(依據(jù):分式的基本性質(zhì)!)
2.最簡公分母:取各分母所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母。
◆通分時(shí),最簡公分母的確定方法:
1.系數(shù)取各個(gè)分母系數(shù)的最小公倍數(shù)作為最簡公分母的系數(shù).
2.取各個(gè)公因式的最高次冪作為最簡公分母的因式.
3.如果分母是多項(xiàng)式,則應(yīng)先把每個(gè)分母分解因式,然后判斷最簡公分母.
八、分式方程的解的步驟:
?、湃シ帜?,把方程兩邊同乘以各分母的最簡公分母。(產(chǎn)生增根的過程)
⑵解整式方程,得到整式方程的解。
?、菣z驗(yàn),把所得的整式方程的解代入最簡公分母中:
如果最簡公分母為0,則原方程無解,這個(gè)未知數(shù)的值是原方程的增根;如果最簡公分母不為0,則是原方程的解。
產(chǎn)生增根的條件是:①是得到的整式方程的解;②代入最簡公分母后值為0。
九、列分式方程——基本步驟:
?、?審—仔細(xì)審題,找出等量關(guān)系。
?、?設(shè)—合理設(shè)未知數(shù)。
?、?列—根據(jù)等量關(guān)系列出方程(組)。
?、?解—解出方程(組)。注意檢驗(yàn)
⑤ 答—答題。
