高考數(shù)學(xué)知識(shí)點(diǎn)及公式大全
全國(guó)卷高考數(shù)學(xué)滿分150分,屬于很重要的一門(mén)科目,那么高考數(shù)學(xué)知識(shí)點(diǎn)及公式有哪些呢?以下是小編整理的一些關(guān)于高考數(shù)學(xué)知識(shí)點(diǎn)及公式,僅供參考。

高考數(shù)學(xué)復(fù)習(xí)重點(diǎn)
第一,函數(shù)與導(dǎo)數(shù)
主要考查集合運(yùn)算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。
第二,平面向量與三角函數(shù)、三角變換及其應(yīng)用
這一部分是高考的重點(diǎn)但不是難點(diǎn),主要出一些基礎(chǔ)題或中檔題。
第三,數(shù)列及其應(yīng)用
這部分是高考的重點(diǎn)而且是難點(diǎn),主要出一些綜合題。
第四,不等式
主要考查不等式的求解和證明,而且很少單獨(dú)考查,主要是在解答題中比較大小。是高考的重點(diǎn)和難點(diǎn)。
第五,概率和統(tǒng)計(jì)
這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。
第六,空間位置關(guān)系的定性與定量分析
主要是證明平行或垂直,求角和距離。主要考察對(duì)定理的熟悉程度、運(yùn)用程度。
第七,解析幾何
高考的難點(diǎn),運(yùn)算量大,一般含參數(shù)。
高考常用數(shù)學(xué)公式
兩角和公式
1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa。
2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb。
3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)。
4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)。
倍角公式
1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga。
2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。
半角公式
1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)。
2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)。
3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))。
4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))。
和差化積
1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)。
2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)。
3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)。
4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb。
5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb。
等差數(shù)列
1、等差數(shù)列的通項(xiàng)公式為:
an=a1+(n-1)d(1)。
2、前n項(xiàng)和公式為:
Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)。
從(1)式可以看出,an是n的一次數(shù)函(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項(xiàng)為0。
在等差數(shù)列中,等差中項(xiàng):一般設(shè)為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項(xiàng)。
且任意兩項(xiàng)am,an的關(guān)系為:
an=am+(n-m)d
它可以看作等差數(shù)列廣義的通項(xiàng)公式。
3、從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}。
若m,n,p,q∈N_且m+n=p+q,則有
am+an=ap+aq。
Sm-1=(2n-1)an,S2n+1=(2n+1)an+1。
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數(shù)列,等等。
和=(首項(xiàng)+末項(xiàng))_數(shù)÷2。
項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1。
首項(xiàng)=2和÷項(xiàng)數(shù)-末項(xiàng)。
末項(xiàng)=2和÷項(xiàng)數(shù)-首項(xiàng)。
項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))/公差+1。
等比數(shù)列
1、等比數(shù)列的通項(xiàng)公式是:An=A1_^(n-1)。
2、前n項(xiàng)和公式是:Sn=[A1(1-q^n)]/(1-q)。
且任意兩項(xiàng)am,an的關(guān)系為an=am·q^(n-m)。
3、從等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}。
4、若m,n,p,q∈N_則有:ap·aq=am·an,等比中項(xiàng):aq·ap=2ar ar則為ap,aq等比中項(xiàng)。
記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1。
另外,一個(gè)各項(xiàng)均為正數(shù)的等比數(shù)列各項(xiàng)取同底數(shù)數(shù)后構(gòu)成一個(gè)等差數(shù)列;反之,以任一個(gè)正數(shù)C為底,用一個(gè)等差數(shù)列的各項(xiàng)做指數(shù)構(gòu)造冪Can,則是等比數(shù)列.在這個(gè)意義下,我們說(shuō):一個(gè)正項(xiàng)等比數(shù)列與等差數(shù)列是“同構(gòu)”的。
性質(zhì):①若m、n、p、q∈N,且m+n=p+q,則am·an=ap_q;
②在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列。
“G是a、b的等比中項(xiàng)”“G^2=ab(G≠0)”。
在等比數(shù)列中,首項(xiàng)A1與公比q都不為零。
拋物線
1、拋物線:y=ax_bx+c就是y等于ax的平方加上bx再加上c。
a>0時(shí),拋物線開(kāi)口向上;a<0時(shí)拋物線開(kāi)口向下;c=0時(shí)拋物線經(jīng)過(guò)原點(diǎn);b=0時(shí)拋物線對(duì)稱軸為y軸。
2、頂點(diǎn)式y(tǒng)=a(x+h)_k就是y等于a乘以(x+h)的平方+k,-h是頂點(diǎn)坐標(biāo)的x,k是頂點(diǎn)坐標(biāo)的y,一般用于求最大值與最小值。
3、拋物線標(biāo)準(zhǔn)方程:y^2=2px它表示拋物線的焦點(diǎn)在x的正半軸上,焦點(diǎn)坐標(biāo)為(p/2,0)。
4、準(zhǔn)線方程為x=-p/2由于拋物線的焦點(diǎn)可在任意半軸,故共有標(biāo)準(zhǔn)方程:y^2=2pxy^2=-2p_^2=2pyx^2=-2py。
高考數(shù)學(xué)答題技巧方法
1、高考數(shù)學(xué)答題帶著量角器進(jìn)考場(chǎng)
帶個(gè)量角器進(jìn)考場(chǎng),遇見(jiàn)解析幾何馬上可以知道是多少度,小題求角基本馬上解了,要是求別的也可以代換,大題角度是個(gè)很重要的結(jié)論,如果你實(shí)在不會(huì),也可以寫(xiě)出最后結(jié)論。
2、高考數(shù)學(xué)答題立體幾何
立體幾何中,求二面角B-OA-C的新方法。利用三面角余弦定理。設(shè)二面角B-OA-C是∠OA,∠AOB是α,∠BOC是β,∠AOC是γ,這個(gè)定理就是:cos∠OA=(cosβ-cosαcosγ)/sinαsinγ。知道這個(gè)定理,如果考試中遇到立體幾何求二面角的題,套一下公式就出來(lái)了。
3、高考數(shù)學(xué)答題取特殊值法
圓錐曲線中最后題往往聯(lián)立起來(lái)很復(fù)雜導(dǎo)致算不出,這時(shí)你可以取特殊值法強(qiáng)行算出過(guò)程就是先聯(lián)立,后算代爾塔,用下韋達(dá)定理,列出題目要求解的表達(dá)式,就ok了。
4、高考數(shù)學(xué)答題空間幾何
空間幾何證明過(guò)程中有一步實(shí)在想不出把沒(méi)用過(guò)的條件直接寫(xiě)上然后得出想不出的那個(gè)結(jié)論即可。如果第一題真心不會(huì)做直接寫(xiě)結(jié)論成立則第二題可以直接用!用常規(guī)法的同學(xué)建議先隨便建立個(gè)空間坐標(biāo)系,做錯(cuò)了還有2分可以得!
5、高考數(shù)學(xué)答題圖像法
超越函數(shù)的導(dǎo)數(shù)選擇題,可以用滿足條件常函數(shù)代替,不行用一次函數(shù)。如果條件過(guò)多,用圖像法秒殺。不等式也是特值法圖像法。
