丰满少妇女人a毛片视频-酒色成人网-日韩欧美一-日韩精品一区二区av在线观看-成人久久免费-欧美精品一二三四区-国产午夜免费-亚洲男人第一天堂-一区二区三区福利视频-午夜激情影院-av中文天堂在线-免费一区二区-欧美日韩xxx-91区视频-亚洲另类激情专区小说图片-黄色的网站在线观看-香蕉精品在线

高分網 > 中考 > 中考輔導 >

中考數學核心知識點

時間: 澤璇 中考輔導

(1)圖象:一次函數的圖象是過點(,0),(0,b)的一條直線,正比例函數的圖象是過點(0,0),(1,k)的直線;|k|越大,(1,k)就越遠離x軸,直線與x軸的夾角越大;|k|越小,(1,k)就離x軸越近,直線與x軸的夾角越小;

(2)性質:k>0時,y隨x增大而增大;k<0時,y隨x增大而減小;

(3)圖象跨越的象限:①k>0,b>0經過一、二、三象限;②k<0,b>0經過一、二、四象限;③k>0,b<0經過一、三、四象限;④k<0,b<0經過二、三、四象限。即k>0,一三;k<0,二四;b>0,一二;b<0,三四。

(4)直線和的位置關系為:;相交于y軸上;b>0b=0b<0增減性k>0y隨著x增大而增大k<0y隨著x增大而減小

用割補法求面積,基本思想是全面積等于各部分面積之和,在割補時需要注意:盡可能使分割出的三角形的邊有一條在坐標軸上,這樣表示面積較為方便。坐標平面內圖形面積算法:把圖形分割或補為底邊在坐標軸或平行于坐標軸的直線上的三角形、梯形等。

求函數的解析式往往運用待定系數法,待定系數法的步驟:(1)設出含待定系數的函數解析式;(2)由已知條件得出關于待定系數的方程(組),解這個方程(組);(3)把系數代回解析式。

仔細體會一次函數與一元一次方程及一元一次不等式之間的內在聯系:(1)一元一次方程kx+b=y0(y0是已知數)的解就是直線上,y=y0這點的橫坐標;(2)一元一次不等式y(tǒng)1≤kx+b≤y2(y1,y2是已知數,且y1反比例函數的定義及解析式求法:(1)定義:形如(k≠0,k是常數)的函數叫做反比例函數,其自變量取值范圍是x≠0;(2)解析式求法:應用待定系數法求k值,由于k=xy,故只需要已知函數圖象上一點,即求出函數的解析式。

中考反比例函數數學知識點

1、反比例函數的概念。一般地,函數(k是常數,k0)叫做反比例函數。反比例函數的解析式也可以寫成的形式。自變量x的取值范圍是x0的一切實數,函數的取值范圍也是一切非零實數。

2、反比例函數的圖像。反比例函數的圖像是雙曲線,它有兩個分支,這兩個分支分別位于第一、三象限,或第二、四象限,它們關于原點對稱。由于反比例函數中自變量x0,函數y0,所以,它的圖像與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標軸,但永遠達不到坐標軸。

3、反比例函數的性質。反比例函數k的符號k>0k<0圖像yo xyo="" k="">0時,函數圖像的'兩個分支分別在第一、三象限。在每個象限內,y隨x的增大而減小。①x的取值范圍是x0,y的取值范圍是y0;②當k<0時,函數圖像的兩個分支分別在第二、四象限。在每個象限內,y隨x的增大而增大。

4、反比例函數解析式的確定。確定及誒是的方法仍是待定系數法。由于在反比例函數中,只有一個待定系數,因此只需要一對對應值或圖像上的一個點的坐標,即可求出k的值,從而確定其解析式。

5、反比例函數的幾何意義。設是反比例函數圖象上任一點,過點P作軸、軸的垂線,垂足為A,則

(1)△OPA的面積.

(2)矩形OAPB的面積。這就是系數的幾何意義.并且無論P怎樣移動,△OPA的面積和矩形OAPB的面積都保持不變。

矩形PCEF面積=,平行四邊形PDEA面積=

初三數學知識點總結

一、基本概念

1、方程、方程的解(根)、方程組的解、解方程(組)

2、分類:

二、解方程的依據—等式性質

1、a=ba+c=b+c

2、a=bac=bc(c0)

三、解法

1、一元一次方程的解法:去分母去括號移項合并同類項

系數化成1解。

2、元一次方程組的解法:

⑴基本思想:消元

⑵方法:

①代入法

②加減法

四、一元二次方程

1、定義及一般形式:

2、解法:

⑴直接開平方法(注意特征)

⑵配方法(注意步驟—推倒求根公式)

⑶公式法:

⑷因式分解法(特征:左邊=0)

3、根的判別式:

4、根與系數頂的關系:

逆定理:若,則以為根的一元二次方程是:

5、常用等式:

五、可化為一元二次方程的方程

1、分式方程

⑴定義

⑵基本思想:

⑶基本解法:

①去分母法

②換元法

⑷驗根及方法

2、無理方程

⑴定義

⑵基本思想:

⑶基本解法:

①乘方法(注意技巧!)

②換元法

⑷驗根及方法

3、簡單的二元二次方程組

由一個二元一次方程和一個二元二次方程組成的二元二次方程組都可用代入法解。

六、列方程(組)解應用題

一概述

列方程(組)解應用題是中學數學聯系實際的一個重要方面。其具體步驟是:

⑴審題。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關系是什么。

⑵設元(未知數)。

①直接未知數

②間接未知數(往往二者兼用)。一般來說,未知數越多,方程越易列,但越難解。

⑶用含未知數的代數式表示相關的量。

⑷尋找相等關系(有的由題目給出,有的由該問題所涉及的等量關系給出),列方程。一般地,未知數個數與方程個數是相同的。

⑸解方程及檢驗。

⑹答案。

綜上所述,列方程(組)解應用題實質是先把實際問題轉化為數學問題(設元、列方程),在由數學問題的解決而導致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟后的作用。因此,列方程是解應用題的關鍵。

二常用的相等關系

1、行程問題(勻速運動)

基本關系:s=vt

⑴相遇問題(同時出發(fā)):

⑵追及問題(同時出發(fā)):

若甲出發(fā)t小時后,乙才出發(fā),而后在B處追上甲,則

⑶水中航行:

2、配料問題:溶質=溶液濃度

溶液=溶質+溶劑

3、增長率問題:

4、工程問題:基本關系:工作量=工作效率工作時間(常把工作量看著單位1)。

5、幾何問題:常用勾股定理,幾何體的`面積、體積公式,相似形及有關比例性質等。

三注意語言與解析式的互化

如,多、少、增加了、增加為(到)、同時、擴大為(到)、擴大了。

又如,一個三位數,百位數字為a,十位數字為b,個位數字為c,則這個三位數為:100a+10b+c,而不是abc。

四注意從語言敘述中寫出相等關系。

如,x比y大3,則x—y=3或x=y+3或x—3=y。又如,x與y的差為3,則x—y=3。五注意單位換算。

如,小時分鐘的換算;s、v、t單位的一致等。

七、應用舉例(略)

第六章一元一次不等式(組)

重點一元一次不等式的性質、解法

☆內容提要☆

1、定義:ab、a

2、一元一次不等式:axb、ax

3、一元一次不等式組:

4、不等式的性質:⑴aa+cb+c

⑵abc(c0)

⑶aac

⑷(傳遞性)acc

⑸ada+cb+d、

5、一元一次不等式的解、解一元一次不等式

6、一元一次不等式組的解、解一元一次不等式組(在數軸上表示解集)

7、應用舉例(略)

初中數學必學的知識點總結3

不等式的概念

1、不等式:用不等號表示不等關系的式子,叫做不等式。

2、不等式的解集:對于一個含有未知數的不等式,任何一個適合這個不等式的未知數的值,都叫做這個不等式的解。

3、對于一個含有未知數的不等式,它的所有解的集合叫做這個不等式的解的集合,簡稱這個不等式的解集。

4、求不等式的解集的過程,叫做解不等式。

5、用數軸表示不等式的方法。

不等式基本性質

1、不等式兩邊都加上或減去同一個數或同一個整式,不等號的方向不變。

2、不等式兩邊都乘以或除以同一個正數,不等號的方向不變。

3、不等式兩邊都乘以或除以同一個負數,不等號的方向改變。

4、說明:①在一元一次不等式中,不像等式那樣,等號是不變的,是隨著加或乘的運算改變。②如果不等式乘以0,那么不等號改為等號所以在題目中,要求出乘以的數,那么就要看看題中是否出現一元一次不等式,如果出現了,那么不等式乘以的數就不等為0,否則不等式不成立。

一元一次不等式

1、一元一次不等式的概念:一般地,不等式中只含有一個未知數,未知數的次數是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步驟:1去分母2去括號3移項4合并同類項5將x項的系數化為1。

一元一次不等式組

1、一元一次不等式組的概念:幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。

2、幾個一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。

3、求不等式組的解集的過程,叫做解不等式組。

4、當任何數x都不能使不等式同時成立,我們就說這個不等式組無解或其解為空集。

5、一元一次不等式組的解法

1分別求出不等式組中各個不等式的解集。

2利用數軸求出這些不等式的解集的公共部分,即這個不等式組的解集。

6、不等式與不等式組

不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。

7、不等式的解集:

①能使不等式成立的未知數的值,叫做不等式的解。

②一個含有未知數的不等式的所有解,組成這個不等式的解集。

③求不等式解集的過程叫做解不等式。

80756 栾城县| 睢宁县| 富裕县| 潢川县| 三门峡市| 陇川县| 旬邑县| 巴彦淖尔市| 山阴县| 卫辉市| 隆昌县| 安国市| 安义县| 辉县市| 永定县| 康定县| 达日县| 额敏县| 普定县| 扬中市| 无锡市| 巍山| 北票市| 新民市| 浮梁县| 青田县| 成武县| 科尔| 湖北省| 弋阳县| 屏山县| 滨州市| 溆浦县| 金溪县| 元朗区| 岳西县| 汽车| 旬阳县| 余江县| 磴口县| 泌阳县|